Package: digitalDLSorteR 1.1.2

Diego Mañanes

digitalDLSorteR: Deconvolution of Bulk RNA-Seq Data Based on Deep Learning

Deconvolution of bulk RNA-Seq data using context-specific deconvolution models based on Deep Neural Networks using scRNA-Seq data as input. These models are able to make accurate estimates of the cell composition of bulk RNA-Seq samples from the same context using the advances provided by Deep Learning and the meaningful information provided by scRNA-Seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> for more details.

Authors:Diego Mañanes [aut, cre], Carlos Torroja [aut], Fatima Sanchez-Cabo [aut]

digitalDLSorteR_1.1.2.tar.gz
digitalDLSorteR_1.1.2.zip(r-4.5)digitalDLSorteR_1.1.2.zip(r-4.4)digitalDLSorteR_1.1.2.zip(r-4.3)
digitalDLSorteR_1.1.2.tgz(r-4.4-any)digitalDLSorteR_1.1.2.tgz(r-4.3-any)
digitalDLSorteR_1.1.2.tar.gz(r-4.5-noble)digitalDLSorteR_1.1.2.tar.gz(r-4.4-noble)
digitalDLSorteR_1.1.2.tgz(r-4.4-emscripten)digitalDLSorteR_1.1.2.tgz(r-4.3-emscripten)
digitalDLSorteR.pdf |digitalDLSorteR.html
digitalDLSorteR/json (API)
NEWS

# Install 'digitalDLSorteR' in R:
install.packages('digitalDLSorteR', repos = c('https://diegommcc.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Bug tracker:https://github.com/diegommcc/digitaldlsorter/issues

On CRAN:

deconvolutiondeep-learningrna-seqsingle-cell

6.10 score 9 stars 5 scripts 101 downloads 78 exports 161 dependencies

Last updated 6 days agofrom:c40770b26d. Checks:OK: 6 ERROR: 1. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 31 2024
R-4.5-winOKOct 31 2024
R-4.5-linuxERROROct 31 2024
R-4.4-winOKOct 31 2024
R-4.4-macOKOct 31 2024
R-4.3-winOKOct 31 2024
R-4.3-macOKOct 31 2024

Exports:barErrorPlotbarPlotCellTypesblandAltmanLehPlotbulk.simulbulk.simul<-calculateEvalMetricscell.namescell.names<-cell.typescell.types<-corrExpPredPlotcreateDDLSobjectdeconv.datadeconv.data<-deconv.resultsdeconv.results<-deconvDDLSObjdeconvDDLSPretrainedDigitalDLSorterDigitalDLSorterDNNdistErrorPlotestimateZinbwaveParamsfeaturesfeatures<-generateBulkCellMatrixgetProbMatrixinstallTFpythoninterGradientsDLlistToDDLSlistToDDLSDNNloadDeconvDataloadTrainedModelFromH5methodmethod<-modelmodel<-plotHeatmapGradsAggplotsplots<-plotTrainingHistorypreparingToSaveprob.cell.typesprob.cell.types<-prob.matrixprob.matrix<-ProbMatrixCellTypesprojectproject<-saveRDSsaveTrainedModelAsH5setset.listset.list<-set<-showProbPlotsimBulkProfilessimSCProfilessingle.cell.realsingle.cell.real<-single.cell.simulsingle.cell.simul<-test.deconv.metricstest.deconv.metrics<-test.metricstest.metrics<-test.predtest.pred<-topGradientsCellTypetrainDDLSModeltrained.modeltrained.model<-training.historytraining.history<-zinb.paramszinb.params<-ZinbParametersModelzinbwave.modelzinbwave.model<-

Dependencies:abindannotateAnnotationDbiaskpassassortheadbackportsbase64encbeachmatBHBiobaseBiocGenericsBiocNeighborsBiocParallelBiocSingularBiostringsbitbit64blobblusterbootbroomcachemcarcarDatacliclustercodetoolscolorspaceconfigcorrplotcowplotcpp11crayoncurlDBIDelayedArrayDerivdoBydplyrdqrngedgeRfansifarverfastmapformatRFormulafutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegridExtragrrgtablegtoolsherehttrigraphIRangesirlbaisobandjsonliteKEGGRESTkeraslabelinglambda.rlatticelifecyclelimmalme4locfitmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemetapodmgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbapplypbkrtestpillarpkgconfigplogrplyrpngpolynomprocessxpspurrrquantregR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreshape2reticulaterlangrprojrootRSQLiterstatixrstudioapirsvdS4ArraysS4VectorsScaledMatrixscalesscranscuttleSingleCellExperimentsitmosnowsoftImputeSparseArraySparseMstatmodstringistringrSummarizedExperimentsurvivalsystensorflowtfautographtfrunstibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewhiskerwithrXMLxtableXVectoryamlzeallotzinbwavezlibbioc

HDF5 files as back-end

Rendered fromhdf5Backend.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-04-02
Started: 2021-08-10

Keras/TensorFlow installation and configuration

Rendered fromkerasIssues.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-29
Started: 2021-08-10

Building new deconvoluion models: deconvolution of colorectal cancer samples

Rendered fromrealModelWorkflow.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-30
Started: 2024-04-02

Using pre-trained context-specific deconvolution models

Rendered frompretrainedModels.Rmdusingknitr::rmarkdownon Oct 31 2024.

Last update: 2024-09-30
Started: 2021-08-10

Readme and manuals

Help Manual

Help pageTopics
Generate bar error plotsbarErrorPlot
Bar plot of deconvoluted cell type proportions in bulk RNA-Seq samplesbarPlotCellTypes barPlotCellTypes,ANY-method barPlotCellTypes,DigitalDLSorter-method
Generate Bland-Altman agreement plots between predicted and expected cell type proportions from test data resultsblandAltmanLehPlot
Get and set 'bulk.simul' slot in a 'DigitalDLSorter' objectbulk.simul bulk.simul,DigitalDLSorter-method bulk.simul<- bulk.simul<-,DigitalDLSorter-method
Calculate evaluation metrics for bulk RNA-Seq samples from test datacalculateEvalMetrics
Get and set 'cell.names' slot in a 'ProbMatrixCellTypes' objectcell.names cell.names,ProbMatrixCellTypes-method cell.names<- cell.names<-,ProbMatrixCellTypes-method
Get and set 'cell.types' slot in a 'DigitalDLSorterDNN' objectcell.types cell.types,DigitalDLSorterDNN-method cell.types<- cell.types<-,DigitalDLSorterDNN-method
Generate correlation plots between predicted and expected cell type proportions from test datacorrExpPredPlot
Create a 'DigitalDLSorter' object from single-cell RNA-seq and bulk RNA-seq datacreateDDLSobject
Get and set 'deconv.data' slot in a 'DigitalDLSorter' objectdeconv.data deconv.data,DigitalDLSorter-method deconv.data<- deconv.data<-,DigitalDLSorter-method
Get and set 'deconv.results' slot in a 'DigitalDLSorter' objectdeconv.results deconv.results,DigitalDLSorter-method deconv.results<- deconv.results<-,DigitalDLSorter-method
Deconvolute bulk gene expression samples (bulk RNA-Seq)deconvDDLSObj
Deconvolute bulk RNA-Seq samples using a pre-trained DigitalDLSorter modeldeconvDDLSPretrained
digitalDLSorteR: an R package to deconvolute bulk RNA-Seq samples using single-cell RNA-seq data and neural networksdigitalDLSorteR-package digitalDLSorteR
The DigitalDLSorter ClassDigitalDLSorter DigitalDLSorter-class
The DigitalDLSorterDNN ClassDigitalDLSorterDNN DigitalDLSorterDNN-class
Generate box plots or violin plots to show how the errors are distributeddistErrorPlot
Estimate the parameters of the ZINB-WaVE model to simulate new single-cell RNA-Seq expression profilesestimateZinbwaveParams
Get and set 'features' slot in a 'DigitalDLSorterDNN' objectfeatures features,DigitalDLSorterDNN-method features<- features<-,DigitalDLSorterDNN-method
Generate training and test cell composition matricesgenerateBulkCellMatrix
Getter function for the cell composition matrixgetProbMatrix
Install Python dependencies for digitalDLSorteRinstallTFpython
Calculate gradients of predicted cell types/loss function with respect to input features for interpreting trained deconvolution modelsinterGradientsDL
Transform DigitalDLSorter-like list into an actual DigitalDLSorterDNN objectlistToDDLS
Transform DigitalDLSorterDNN-like list into an actual DigitalDLSorterDNN objectlistToDDLSDNN
Load data to be deconvoluted into a DigitalDLSorter objectloadDeconvData loadDeconvData,DigitalDLSorter,character-method loadDeconvData,DigitalDLSorter,SummarizedExperiment-method
Load from an HDF5 file a trained Deep Neural Network model into a 'DigitalDLSorter' objectloadTrainedModelFromH5
Get and set 'method' slot in a 'ProbMatrixCellTypes' objectmethod method,ProbMatrixCellTypes-method method<- method<-,ProbMatrixCellTypes-method
Get and set 'model' slot in a 'DigitalDLSorterDNN' objectmodel model,DigitalDLSorterDNN-method model<- model<-,DigitalDLSorterDNN-method
Plot a heatmap of gradients of classes / loss function wtih respect to the inputplotHeatmapGradsAgg
Get and set 'plots' slot in a 'ProbMatrixCellTypes' objectplots plots,ProbMatrixCellTypes-method plots<- plots<-,ProbMatrixCellTypes-method
Plot training history of a trained DigitalDLSorter Deep Neural Network modelplotTrainingHistory
Prepare 'DigitalDLSorter' object to be saved as an RDA filepreparingToSave
Get and set 'prob.cell.types' slot in a 'DigitalDLSorter' objectprob.cell.types prob.cell.types,DigitalDLSorter-method prob.cell.types<- prob.cell.types<-,DigitalDLSorter-method
Get and set 'prob.matrix' slot in a 'ProbMatrixCellTypes' objectprob.matrix prob.matrix,ProbMatrixCellTypes-method prob.matrix<- prob.matrix<-,ProbMatrixCellTypes-method
The Class ProbMatrixCellTypesProbMatrixCellTypes ProbMatrixCellTypes-class
Get and set 'project' slot in a 'DigitalDLSorter' objectproject project,DigitalDLSorter-method project<- project<-,DigitalDLSorter-method
Save 'DigitalDLSorter' objects as RDS filessaveRDS saveRDS,DigitalDLSorter-method saveRDS,DigitalDLSorterDNN-method saveRDS,saveRDS-method
Save a trained 'DigitalDLSorter' Deep Neural Network model to disk as an HDF5 filesaveTrainedModelAsH5
Get and set 'set' slot in a 'ProbMatrixCellTypes' objectset set,ProbMatrixCellTypes-method set<- set<-,ProbMatrixCellTypes-method
Get and set 'set.list' slot in a 'ProbMatrixCellTypes' objectset.list set.list,ProbMatrixCellTypes-method set.list<- set.list<-,ProbMatrixCellTypes-method
Show distribution plots of the cell proportions generated by 'generateBulkCellMatrix'showProbPlot
Simulate training and test pseudo-bulk RNA-Seq profilessimBulkProfiles
Simulate new single-cell RNA-Seq expression profiles using the ZINB-WaVE model parameterssimSCProfiles
Get and set 'single.cell.real' slot in a 'DigitalDLSorter' objectsingle.cell.real single.cell.real,DigitalDLSorter-method single.cell.real<- single.cell.real<-,DigitalDLSorter-method
Get and set 'single.cell.simul' slot in a 'DigitalDLSorter' objectsingle.cell.simul single.cell.simul,DigitalDLSorter-method single.cell.simul<- single.cell.simul<-,DigitalDLSorter-method
Get and set 'test.deconv.metrics' slot in a 'DigitalDLSorterDNN' objecttest.deconv.metrics test.deconv.metrics,DigitalDLSorterDNN-method test.deconv.metrics<- test.deconv.metrics<-,DigitalDLSorterDNN-method
Get and set 'test.metrics' slot in a 'DigitalDLSorterDNN' objecttest.metrics test.metrics,DigitalDLSorterDNN-method test.metrics<- test.metrics<-,DigitalDLSorterDNN-method
Get and set 'test.pred' slot in a 'DigitalDLSorterDNN' objecttest.pred test.pred,DigitalDLSorterDNN-method test.pred<- test.pred<-,DigitalDLSorterDNN-method
Get top genes with largest/smallest gradients per cell typetopGradientsCellType
Train Deep Neural Network modeltrainDDLSModel
Get and set 'trained.model' slot in a 'DigitalDLSorter' objecttrained.model trained.model,DigitalDLSorter-method trained.model<- trained.model<-,DigitalDLSorter-method
Get and set 'training.history' slot in a 'DigitalDLSorterDNN' objecttraining.history training.history,DigitalDLSorterDNN-method training.history<- training.history<-,DigitalDLSorterDNN-method
Get and set 'zinb.params' slot in a 'DigitalDLSorter' objectzinb.params zinb.params,DigitalDLSorter-method zinb.params<- zinb.params<-,DigitalDLSorter-method
The Class ZinbParametersModelZinbParametersModel ZinbParametersModel-class
Get and set 'zinbwave.model' slot in a 'ZinbParametersModel' objectzinbwave.model zinbwave.model,ZinbParametersModel-method zinbwave.model<- zinbwave.model<-,ZinbParametersModel-method