
Package: digitalDLSorteR (via r-universe)
October 31, 2024

Type Package

Title Deconvolution of Bulk RNA-Seq Data Based on Deep Learning

Version 1.1.2

Maintainer Diego Mañanes <dmananesc@cnic.es>

Description Deconvolution of bulk RNA-Seq data using context-specific
deconvolution models based on Deep Neural Networks using
scRNA-Seq data as input. These models are able to make accurate
estimates of the cell composition of bulk RNA-Seq samples from
the same context using the advances provided by Deep Learning
and the meaningful information provided by scRNA-Seq data. See
Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978>
for more details.

License GPL-3

URL https://diegommcc.github.io/digitalDLSorteR/,

https://github.com/diegommcc/digitalDLSorteR

BugReports https://github.com/diegommcc/digitalDLSorteR/issues

Encoding UTF-8

Depends R (>= 4.0.0)

Imports rlang, grr, Matrix, methods, tidyr, SingleCellExperiment,
SummarizedExperiment, zinbwave, stats, pbapply, S4Vectors,
dplyr, tools, reshape2, gtools, reticulate, keras, tensorflow,
ggplot2, ggpubr, scran, scuttle

Suggests knitr, rmarkdown, BiocParallel, rhdf5, DelayedArray,
DelayedMatrixStats, HDF5Array, ComplexHeatmap, testthat

SystemRequirements Python (>= 2.7.0), TensorFlow
(https://www.tensorflow.org/)

RoxygenNote 7.3.2

Roxygen list(markdown = TRUE)

Collate 'AllClasses.R' 'AllGenerics.R' 'digitalDLSorteR.R'
'dnnModel.R' 'evalMetrics.R' 'interGradientsDL.R' 'loadData.R'
'simBulk.R' 'simSingleCell.R' 'utils.R'

1

https://doi.org/10.3389/fgene.2019.00978
https://diegommcc.github.io/digitalDLSorteR/
https://github.com/diegommcc/digitalDLSorteR
https://github.com/diegommcc/digitalDLSorteR/issues

2 Contents

VignetteBuilder knitr

Repository https://diegommcc.r-universe.dev

RemoteUrl https://github.com/diegommcc/digitaldlsorter

RemoteRef HEAD

RemoteSha c40770b26d25d3253770ffdddec37a70fa520151

Contents
barErrorPlot . 3
barPlotCellTypes . 5
blandAltmanLehPlot . 7
bulk.simul . 10
calculateEvalMetrics . 10
cell.names . 12
cell.types . 13
corrExpPredPlot . 13
createDDLSobject . 16
deconv.data . 20
deconv.results . 21
deconvDDLSObj . 21
deconvDDLSPretrained . 24
digitalDLSorteR . 27
DigitalDLSorter-class . 28
DigitalDLSorterDNN-class . 30
distErrorPlot . 31
estimateZinbwaveParams . 34
features . 36
generateBulkCellMatrix . 37
getProbMatrix . 40
installTFpython . 41
interGradientsDL . 42
listToDDLS . 44
listToDDLSDNN . 45
loadDeconvData . 46
loadTrainedModelFromH5 . 46
method . 47
model . 48
plotHeatmapGradsAgg . 48
plots . 50
plotTrainingHistory . 50
preparingToSave . 51
prob.cell.types . 52
prob.matrix . 52
ProbMatrixCellTypes-class . 53
project . 54
saveRDS . 54

barErrorPlot 3

saveTrainedModelAsH5 . 55
set . 56
set.list . 57
showProbPlot . 57
simBulkProfiles . 59
simSCProfiles . 62
single.cell.real . 65
single.cell.simul . 66
test.deconv.metrics . 66
test.metrics . 67
test.pred . 67
topGradientsCellType . 68
trainDDLSModel . 69
trained.model . 73
training.history . 74
zinb.params . 74
ZinbParametersModel-class . 75
zinbwave.model . 75

Index 76

barErrorPlot Generate bar error plots

Description

Generate bar error plots by cell type (CellType) or by number of different cell types (nCellTypes)
on test pseudo-bulk samples.

Usage

barErrorPlot(
object,
error = "MSE",
by = "CellType",
dispersion = "se",
filter.sc = TRUE,
title = NULL,
angle = NULL,
theme = NULL

)

Arguments

object DigitalDLSorter object with trained.model slot containing metrics in test.deconv.metrics
slot.

error 'MAE' or 'MSE'.

by Variable used to display errors. Available options are: 'nCellTypes', 'CellType'.

4 barErrorPlot

dispersion Standard error ('se') or standard deviation ('sd'). The former is the default.

filter.sc Boolean indicating whether single-cell profiles are filtered out and only correla-
tion of results associated with bulk samples are displayed (TRUE by default).

title Title of the plot.

angle Angle of ticks.

theme ggplot2 theme.

Value

A ggplot object with the mean and dispersion of the errors

See Also

calculateEvalMetrics corrExpPredPlot distErrorPlot blandAltmanLehPlot

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",

barPlotCellTypes 5

prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
DDLS <- calculateEvalMetrics(

object = DDLS
)
bar error plots
barErrorPlot(

object = DDLS,
error = "MSE",
by = "CellType"

)
barErrorPlot(

object = DDLS,
error = "MAE",
by = "nCellTypes"

)

End(Not run)

barPlotCellTypes Bar plot of deconvoluted cell type proportions in bulk RNA-Seq sam-
ples

Description

Bar plot of deconvoluted cell type proportions in bulk RNA-Seq samples.

Usage

barPlotCellTypes(
data,
colors = NULL,
simplify = NULL,
color.line = NA,
x.label = "Bulk samples",
rm.x.text = FALSE,
title = "Results of deconvolution",

6 barPlotCellTypes

legend.title = "Cell types",
angle = 90,
theme = NULL,
...

)

S4 method for signature 'DigitalDLSorter'
barPlotCellTypes(
data,
colors = NULL,
simplify = NULL,
color.line = NA,
x.label = "Bulk samples",
rm.x.text = FALSE,
title = "Results of deconvolution",
legend.title = "Cell types",
angle = 90,
theme = NULL,
name.data = NULL

)

S4 method for signature 'ANY'
barPlotCellTypes(
data,
colors,
color.line = NA,
x.label = "Bulk samples",
rm.x.text = FALSE,
title = "Results of deconvolution",
legend.title = "Cell types",
angle = 90,
theme = NULL

)

Arguments

data DigitalDLSorter object with deconv.results slot or a data frame/matrix
with cell types as columns and samples as rows.

colors Vector of colors to be used.

simplify Type of simplification performed during deconvolution. Can be simpli.set or
simpli.maj (NULL by default). It is only for DigitalDLSorter objects.

color.line Color of the border bars.

x.label Label of x-axis.

rm.x.text Logical value indicating whether to remove x-axis ticks (name of samples).

title Title of the plot.

legend.title Title of the legend plot.

blandAltmanLehPlot 7

angle Angle of text ticks.

theme ggplot2 theme.

... Other arguments for specific methods.

name.data If a DigitalDLSorter is given, name of the element that stores the results in
the deconv.results slot.

Value

A ggplot object with the provided cell proportions represented as a bar plot.

See Also

deconvDDLSPretrained deconvDDLSObj

Examples

matrix of simulated proportions (same estructure as deconvolution results)
deconvResults <- gtools::rdirichlet(n = 20, alpha = c(1, 1, 1, 0.5, 0.1))
colnames(deconvResults) <- paste("CellType", seq(ncol(deconvResults)))
rownames(deconvResults) <- paste("BulkSample", seq(nrow(deconvResults)))
barPlotCellTypes(deconvResults)

Using a DigitalDLSorter object
DDLS <- DigitalDLSorter(deconv.results = list(Example = deconvResults))
barPlotCellTypes(DDLS)

blandAltmanLehPlot Generate Bland-Altman agreement plots between predicted and ex-
pected cell type proportions from test data results

Description

Generate Bland-Altman agreement plots between predicted and expected cell type proportions from
test data results. The Bland-Altman agreement plots can be displayed all mixed or split by cell
type (CellType) or the number of cell types present in samples (nCellTypes). See the facet.by
argument and examples for more information.

Usage

blandAltmanLehPlot(
object,
colors,
color.by = "CellType",
facet.by = NULL,
log.2 = FALSE,
filter.sc = TRUE,

8 blandAltmanLehPlot

density = TRUE,
color.density = "darkblue",
size.point = 0.05,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object DigitalDLSorter object with trained.model slot containing metrics in test.deconv.metrics
slot.

colors Vector of colors to be used. Only vectors with a number of colors equal to or
greater than the levels of color.by will be accepted. By default a custom color
list is used.

color.by Variable used to color data. Options are nCellTypes and CellType.

facet.by Variable used to display the data in different panels. If NULL, the plot is not
split into different panels. Options are nCellTypes (by number of different cell
types) and CellType (by cell type).

log.2 Whether to display the Bland-Altman agreement plot in log2 space (FALSE by
default).

filter.sc Boolean indicating whether single-cell profiles are filtered out and only correla-
tions of results associated with bulk samples are displayed (TRUE by default).

density Boolean indicating whether density lines must be displayed (TRUE by default).

color.density Color of density lines if the density argument is TRUE.

size.point Size of the points (0.1 by default).

alpha.point Alpha of the points (0.1 by default).

ncol Number of columns if facet.by is used.

nrow Number of rows if facet.by is used.

title Title of the plot.

theme ggplot2 theme.

... Additional argument for the facet_wrap function from ggplot2 if facet.by is
not NULL.

Value

A ggplot object with Bland-Altman agreement plots between expected and actual proportions.

See Also

calculateEvalMetrics corrExpPredPlot distErrorPlot barErrorPlot

blandAltmanLehPlot 9

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
DDLS <- calculateEvalMetrics(

object = DDLS
)
Bland-Altman plot by cell type

10 calculateEvalMetrics

blandAltmanLehPlot(
object = DDLS,
facet.by = "CellType",
color.by = "CellType"

)
Bland-Altman plot of all samples mixed
blandAltmanLehPlot(

object = DDLS,
facet.by = NULL,
color.by = "CellType",
alpha.point = 0.3,
log2 = TRUE

)

End(Not run)

bulk.simul Get and set bulk.simul slot in a DigitalDLSorter object

Description

Get and set bulk.simul slot in a DigitalDLSorter object

Usage

bulk.simul(object, type.data = "both")

bulk.simul(object, type.data = "both") <- value

Arguments

object DigitalDLSorter object.

type.data Element of the list. Can be 'train', 'test' or 'both' (the last by default).

value List with two elements, train and test, each one being a SummarizedExperiment
object with simulated bulk RNA-Seq samples.

calculateEvalMetrics Calculate evaluation metrics for bulk RNA-Seq samples from test data

calculateEvalMetrics 11

Description

Calculate evaluation metrics for bulk RNA-seq samples from test data to understand model perfor-
mance. By default, absolute error (AbsErr), proportional absolute error (ppAbsErr), squared error
(SqrErr) and proportional squared error (ppSqrErr) are calculated for each test sample. In addi-
tion, each of these metrics is aggregated using their mean values according to three criteria: each
cell type (CellType), probability bins in ranges of 0.1 (pBin) and number of different cell types
present in the sample nCellTypes. Finally, the process is repeated only considering bulk samples
(filtering out single-cell profiles from the evaluation). The evaluation metrics will be available in
the test.deconv.metrics slot of the DigitalDLSorterDNN object (trained.model slot of the
DigitalDLSorter object).

Usage

calculateEvalMetrics(object, metrics = c("MAE", "MSE"))

Arguments

object DigitalDLSorter object with a trained model in the trained.model slot and
the actual cell proportions of pseudo-bulk samples in prob.cell.matrix slot.

metrics Metrics used to evaluate the model performance. Mean absolute error ("MAE")
and mean squared error ("MSE") by default.

Value

A DigitalDLSorter object with the trained.model slot containing a DigitalDLSorterDNN ob-
ject with the test.deconv.metrics slot. The last contains the metrics calculated.

See Also

distErrorPlot corrExpPredPlot blandAltmanLehPlot barErrorPlot

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

12 cell.names

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
DDLS <- calculateEvalMetrics(

object = DDLS
)

End(Not run)

cell.names Get and set cell.names slot in a ProbMatrixCellTypes object

Description

Get and set cell.names slot in a ProbMatrixCellTypes object

Usage

cell.names(object)

cell.names(object) <- value

cell.types 13

Arguments

object ProbMatrixCellTypes object.

value Matrix containing the name of the pseudo-bulk samples to be simulated as rows
and the cells to be used to simulate them as columns (n.cell argument)

cell.types Get and set cell.types slot in a DigitalDLSorterDNN object

Description

Get and set cell.types slot in a DigitalDLSorterDNN object

Usage

cell.types(object)

cell.types(object) <- value

Arguments

object DigitalDLSorterDNN object.

value Vector with cell types considered by the Deep Neural Network model.

corrExpPredPlot Generate correlation plots between predicted and expected cell type
proportions from test data

Description

Generate correlation plot between predicted and expected cell type proportions from test data. Cor-
relation plots can be displayed all mixed or split by cell type (CellType) or number of cell types
present in the samples (nCellTypes). See the facet.by argument and examples for more informa-
tion. Moreover, a user-selected correlation value is displayed as an annotation on the plots. See the
corr argument for details.

Usage

corrExpPredPlot(
object,
colors,
facet.by = NULL,
color.by = "CellType",
corr = "both",
filter.sc = TRUE,

14 corrExpPredPlot

pos.x.label = 0.01,
pos.y.label = 0.95,
sep.labels = 0.15,
size.point = 0.1,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object DigitalDLSorter object with trained.model slot containing metrics in the
test.deconv.metrics slot of a DigitalDLSorterDNN object.

colors Vector of colors to be used. Only vectors with a number of colors equal to or
greater than the levels of color.by will be accepted. By default, a custom color
list is used.

facet.by Variable used to display data in different panels. If NULL, the plot is not split into
different panels. Options are nCellTypes (by number of different cell types) and
CellType (by cell type).

color.by Variable used to color data. Options are nCellTypes and CellType.

corr Correlation value displayed as an annotation on the plot. Available metrics are
Pearson’s correlation coefficient ('pearson') and concordance correlation coef-
ficient ('ccc'). The argument can be 'pearson', 'ccc' or 'both' (by default).

filter.sc Boolean indicating whether single-cell profiles are filtered out and only errors
associated with pseudo-bulk samples are displayed (TRUE by default).

pos.x.label X-axis position of correlation annotations (0.95 by default).

pos.y.label Y-axis position of correlation annotations (0.1 by default).

sep.labels Space separating annotations if corr is equal to 'both' (0.15 by default).

size.point Size of points (0.1 by default).

alpha.point Alpha of points (0.1 by default).

ncol Number of columns if facet.by is other than NULL.

nrow Number of rows if facet.by is different from NULL.

title Title of the plot.

theme ggplot2 theme.

... Additional arguments for the facet_wrap function from ggplot2 if facet.by is
not NULL.

Value

A ggplot object with the correlation plots between expected and actual proportions.

corrExpPredPlot 15

See Also

calculateEvalMetrics distErrorPlot blandAltmanLehPlot barErrorPlot

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
evaluation using test data

16 createDDLSobject

DDLS <- calculateEvalMetrics(
object = DDLS

)
correlations by cell type
corrExpPredPlot(

object = DDLS,
facet.by = "CellType",
color.by = "CellType",
corr = "both"

)
correlations of all samples mixed
corrExpPredPlot(

object = DDLS,
facet.by = NULL,
color.by = "CellType",
corr = "ccc",
pos.x.label = 0.2,
alpha.point = 0.3

)

End(Not run)

createDDLSobject Create a DigitalDLSorter object from single-cell RNA-seq and bulk
RNA-seq data

Description

This function creates a DigitalDLSorter object from single-cell RNA-seq (SingleCellExperiment
object) and bulk RNA-seq data to be deconvoluted (bulk.data parameter) as a SummarizedExperiment
object.

Usage

createDDLSobject(
sc.data,
sc.cell.ID.column,
sc.gene.ID.column,
sc.cell.type.column,
bulk.data,
bulk.sample.ID.column,
bulk.gene.ID.column,
bulk.name.data = "Bulk.DT",
filter.mt.genes = "^mt-",
sc.filt.genes.cluster = TRUE,
sc.min.mean.counts = 1,
sc.n.genes.per.cluster = 300,
top.n.genes = 2000,

createDDLSobject 17

sc.log.FC = TRUE,
sc.log.FC.cutoff = 0.5,
sc.min.counts = 1,
sc.min.cells = 1,
bulk.min.counts = 1,
bulk.min.samples = 1,
shared.genes = TRUE,
sc.name.dataset.h5 = NULL,
sc.file.backend = NULL,
sc.name.dataset.backend = NULL,
sc.compression.level = NULL,
sc.chunk.dims = NULL,
sc.block.processing = FALSE,
verbose = TRUE,
project = "DigitalDLSorter-Project"

)

Arguments

sc.data Single-cell RNA-seq profiles to be used as reference. If data are provided from
files, single.cell.real must be a vector of three elements: single-cell counts,
cells metadata and genes metadata. On the other hand, If data are provided
from a SingleCellExperiment object, single-cell counts must be present in
the assay slot, cells metadata in the colData slot, and genes metadata in the
rowData slot.

sc.cell.ID.column

Name or number of the column in cells metadata corresponding to cell names in
expression matrix (single-cell RNA-seq data).

sc.gene.ID.column

Name or number of the column in genes metadata corresponding to the names
used for features/genes (single-cell RNA-seq data).

sc.cell.type.column

Name or column number corresponding to cell types in cells metadata.

bulk.data Bulk transcriptomics data to be deconvoluted. It has to be a SummarizedExperiment
object.

bulk.sample.ID.column

Name or column number corresponding to sample IDs in samples metadata
(bulk transcriptomics data).

bulk.gene.ID.column

Name or number of the column in the genes metadata corresponding to the
names used for features/genes (bulk transcriptomics data).

bulk.name.data Name of the bulk RNA-seq dataset ("Bulk.DT" by default).

filter.mt.genes

Regular expression matching mitochondrial genes to be ruled out (^mt- by de-
fault). If NULL, no filtering is performed.

18 createDDLSobject

sc.filt.genes.cluster

Whether to filter single-cell RNA-seq genes according to a minimum thresh-
old of non-zero average counts per cell type (sc.min.mean.counts). TRUE by
default.

sc.min.mean.counts

Minimum non-zero average counts per cluster to filter genes. 1 by default.

sc.n.genes.per.cluster

Top n genes with the highest logFC per cluster (300 by default). See Details
section for more details.

top.n.genes Maximum number of genes used for downstream steps (2000 by default). In
case the number of genes after filtering is greater than top.n.genes, these genes
will be set according to variability across the whole single-cell dataset.

sc.log.FC Whether to filter genes with a logFC less than 0.5 when sc.filt.genes.cluster
= TRUE.

sc.log.FC.cutoff

LogFC cutoff used if sc.log.FC == TRUE.

sc.min.counts Minimum gene counts to filter (1 by default; single-cell RNA-seq data).

sc.min.cells Minimum of cells with more than min.counts (1 by default; single-cell RNA-
seq data).

bulk.min.counts

Minimum gene counts to filter (1 by default; bulk transcriptomics data).

bulk.min.samples

Minimum of samples with more than min.counts (1 by default; bulk transcrip-
tomics data).

shared.genes If set to TRUE, only genes present in both the single-cell and spatial transcrip-
tomics data will be retained for further processing (TRUE by default).

sc.name.dataset.h5

Name of the data set if HDF5 file is provided for single-cell RNA-seq data.

sc.file.backend

Valid file path where to store the loaded for single-cell RNA-seq data as HDF5
file. If provided, data are stored in a HDF5 file as back-end using the De-
layedArray and HDF5Array packages instead of being loaded into RAM. This
is suitable for situations where you have large amounts of data that cannot be
stored in memory. Note that operations on these data will be performed by
blocks (i.e subsets of determined size), which may result in longer execution
times. NULL by default.

sc.name.dataset.backend

Name of the HDF5 file dataset to be used. Note that it cannot exist. If NULL (by
default), a random dataset name will be generated.

sc.compression.level

The compression level used if sc.file.backend is provided. It is an integer
value between 0 (no compression) and 9 (highest and slowest compression).
See ?getHDF5DumpCompressionLevel from the HDF5Array package for more
information.

createDDLSobject 19

sc.chunk.dims Specifies dimensions that HDF5 chunk will have. If NULL, the default value
is a vector of two items: the number of genes considered by DigitalDLSorter
object during the simulation, and only one sample in order to increase read times
in the following steps. A larger number of columns written in each chunk may
lead to longer read times.

sc.block.processing

Boolean indicating whether single-cell RNA-seq data should be treated as blocks
(only if data are provided as HDF5 file). FALSE by default. Note that using this
functionality is suitable for cases where it is not possible to load data into RAM
and therefore execution times will be longer.

verbose Show informative messages during the execution (TRUE by default).
project Name of the project for DigitalDLSorter object.

Details

Filtering genes
In order to reduce the number of dimensions used for subsequent steps, createSpatialDDLSobject
implements different strategies aimed at removing useless genes for deconvolution:

• Filtering at the cell level: genes less expressed than a determined cutoff in N cells are removed.
See sc.min.cells/bulk.min.samples and sc.min.counts/bulk.min.counts parameters.

• Filtering at the cluster level (only for scRNA-seq data): if sc.filt.genes.cluster == TRUE,
createDDLSobject sets a cutoff of non-zero average counts per cluster (sc.min.mean.counts
parameter) and take only the sc.n.genes.per.cluster genes with the highest logFC per
cluster. LogFCs are calculated using normalized logCPM of each cluster with respect to
the average in the whole dataset). Finally, if the number of remaining genes is greater than
top.n.genes, genes are ranked based on variance and the top.n.genes most variable genes
are used for downstream analyses.

Single-cell RNA-seq data
Single-cell RNA-seq data can be provided from files (formats allowed: tsv, tsv.gz, mtx (sparse
matrix) and hdf5) or a SingleCellExperiment object. The data provided should consist of three
pieces of information:

• Single-cell counts: genes as rows and cells as columns.
• Cells metadata: annotations (columns) for each cell (rows).
• Genes metadata: annotations (columns) for each gene (rows).

If the data is provided from files, single.cell.real argument must be a vector of three elements
ordered so that the first file corresponds to the count matrix, the second to the cells metadata and the
last to the genes metadata. On the other hand, if the data is provided as a SingleCellExperiment
object, it must contain single-cell counts in the assay slot, cells metadata in the colData slot and
genes metadata in the rowData. The data must be provided without any transformation (e.g. log-
transformation) and raw counts are preferred.

Bulk transcriptomics data
It must be a SummarizedExperiment object (or a list of them if samples from different experiments
are going to be deconvoluted) containing the same information as the single-cell RNA-seq data: the
count matrix, samples metadata (with IDs is enough), and genes metadata. Please, make sure the
gene identifiers used in the bulk and single-cell transcriptomics data are consistent.

20 deconv.data

Value

A DigitalDLSorter object with the single-cell RNA-seq data provided loaded into the single.cell.real
slot as a SingleCellExperiment object. If bulk transcriptomics data are provided, they will be
stored in the deconv.data slot.

See Also

estimateZinbwaveParams generateBulkCellMatrix

Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.min.cells = 0,
sc.min.counts = 0,
sc.log.FC = FALSE,
sc.filt.genes.cluster = FALSE,
project = "Simul_example"

)

deconv.data Get and set deconv.data slot in a DigitalDLSorter object

Description

Get and set deconv.data slot in a DigitalDLSorter object

deconv.results 21

Usage

deconv.data(object, name.data = NULL)

deconv.data(object, name.data = NULL) <- value

Arguments

object DigitalDLSorter object.

name.data Name of the data. If NULL (by default), all data contained in the deconv.data
slot are returned.

value List whose names are the reference of the stored data.

deconv.results Get and set deconv.results slot in a DigitalDLSorter object

Description

Get and set deconv.results slot in a DigitalDLSorter object

Usage

deconv.results(object, name.data = NULL)

deconv.results(object, name.data = NULL) <- value

Arguments

object DigitalDLSorter object.

name.data Name of the data. If NULL (by default), all results contained in the deconv.results
slot are returned.

value List whose names are the reference of the stored results.

deconvDDLSObj Deconvolute bulk gene expression samples (bulk RNA-Seq)

Description

Deconvolute bulk gene expression samples (bulk RNA-Seq). This function requires a DigitalDLSorter
object with a trained Deep Neural Network model (trained.model slot) and the new bulk RNA-
Seq samples to be deconvoluted in the deconv.data slot. See ?loadDeconvData for more details.

22 deconvDDLSObj

Usage

deconvDDLSObj(
object,
name.data = "Bulk.DT",
normalize = TRUE,
scaling = "standardize",
simplify.set = NULL,
simplify.majority = NULL,
use.generator = FALSE,
batch.size = 64,
verbose = TRUE

)

Arguments

object DigitalDLSorter object with trained.data and deconv.data slots.

name.data Name of the data stored in the DigitalDLSorter object. If not provided, the
first data set will be used.

normalize Normalize data before deconvolution (TRUE by default).

scaling How to scale data before training. It may be: "standardize" (values are cen-
tered around the mean with a unit standard deviation) or "rescale" (values are
shifted and rescaled so that they end up ranging between 0 and 1). If normalize
= FALSE, data is not scaled.

simplify.set List specifying which cell types should be compressed into a new label whose
name will be the list item. See examples for details. If provided, results are
stored in a list with ’raw’ and ’simpli.set’ results.

simplify.majority

List specifying which cell types should be compressed into the cell type with
the highest proportion in each sample. Unlike simplify.set, it allows to main-
tain the complexity of the results while compressing the information, as no new
labels are created. If provided, the results are stored in a list with ’raw’ and
’simpli.majority’ results.

use.generator Boolean indicating whether to use generators for prediction (FALSE by default).

batch.size Number of samples per batch. Only when use.generator = TRUE.

verbose Show informative messages during the execution.

Details

This function is intended for users who have built a devonvolution model using their own single-
cell RNA-Seq data. If you want to use a pre-trained model to deconvolute your samples, see
?deconvDDLSPretrained.

Value

DigitalDLSorter object with deconv.results slot. The resulting information is a data frame with
samples (i) as rows and cell types (j) as columns. Each entry represents the proportion of j cell type

deconvDDLSObj 23

in i sample. If simplify.set or/and simpplify.majority are provided, the deconv.results slot
will contain a list with raw and simplified results.

References

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978

See Also

trainDDLSModel DigitalDLSorter

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

https://doi.org/10.3389/fgene.2019.00978

24 deconvDDLSPretrained

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
simulating bulk RNA-Seq data
countsBulk <- matrix(

stats::rpois(100, lambda = sample(seq(4, 10), size = 100, replace = TRUE)),
nrow = 40, ncol = 15,
dimnames = list(paste0("Gene", seq(40)), paste0("Bulk", seq(15)))

)
seBulk <- SummarizedExperiment(assay = list(counts = countsBulk))
DDLS <- loadDeconvData(

object = DDLS,
data = seBulk,
name.data = "Example"

)
simplify arguments
simplify <- list(CellGroup1 = c("CellType1", "CellType2", "CellType4"),

CellGroup2 = c("CellType3", "CellType5"))
DDLS <- deconvDDLSObj(

object = DDLS,
name.data = "Example",
simplify.set = simplify,
simplify.majority = simplify

)

End(Not run)

deconvDDLSPretrained Deconvolute bulk RNA-Seq samples using a pre-trained DigitalDL-
Sorter model

Description

Deconvolute bulk gene expression samples (bulk RNA-Seq) to enumerate and quantify the pro-
portion of cell types present in a bulk sample using Deep Neural Network models. This function
is intended for users who want to use pre-trained models integrated in the package. So far, the
available models allow to deconvolute the immune infiltration of breast cancer (using data from
Chung et al., 2017) and the immune infiltration of colorectal cancer (using data from Li et al.,
2017) samples. For the former, two models are available at two different levels of specificity: spe-
cific cell types (breast.chung.specific) and generic cell types (breast.chung.generic). See
breast.chung.generic, breast.chung.specific, and colorectal.li documentation from the
digitalDLSorteRdata package for more details.

deconvDDLSPretrained 25

Usage

deconvDDLSPretrained(
data,
model = NULL,
normalize = TRUE,
scaling = "standardize",
simplify.set = NULL,
simplify.majority = NULL,
use.generator = FALSE,
batch.size = 64,
verbose = TRUE

)

Arguments

data Matrix or data frame with bulk RNA-Seq samples with genes as rows in SYM-
BOL notation and samples as columns.

model Pre-trained DNN model to use to deconvolute data. Up to now, the available
models are intended to deconvolute samples from breast cancer (breast.chung.generic
and breast.chung.specific) and colorectal cancer (colorectal.li). These
pre-trained models are stored in the digitalDLSorteRdata package, so it must
be installed together with digitalDLSorteR to use this function.

normalize Normalize data before deconvolution (TRUE by default).

scaling How to scale data before training. It may be: "standardize" (values are cen-
tered around the mean with a unit standard deviation) or "rescale" (values are
shifted and rescaled so that they end up ranging between 0 and 1). If normalize
= FALSE, data is not scaled.

simplify.set List specifying which cell types should be compressed into a new label whose
name will be the list name item. See examples and vignettes for details.

simplify.majority

List specifying which cell types should be compressed into the cell type with the
highest proportion in each sample. Unlike simplify.set, this argument allows
to maintain the complexity of the results while compressing the information, as
no new labels are created.

use.generator Boolean indicating whether to use generators for prediction (FALSE by default).

batch.size Number of samples per batch. Only when use.generator = TRUE.

verbose Show informative messages during execution.

Details

This function is intended for users who want to use digitalDLSorteR to deconvolute their bulk
RNA-Seq samples using pre-trained models. For users who want to build their own models from
other scRNA-Seq datasets, see the createDDLSobject and deconvDDLSObj functions.

26 deconvDDLSPretrained

Value

A data frame with samples (i) as rows and cell types (j) as columns. Each entry represents the
predicted proportion of cell type j in sample i.

References

Chung, W., Eum, H. H., Lee, H. O., Lee, K. M., Lee, H. B., Kim, K. T., et al. (2017). Single-cell
RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat.
Commun. 8 (1), 15081. doi: doi:10.1038/ncomms15081.

See Also

deconvDDLSObj

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,

https://doi.org/10.1038/ncomms15081

digitalDLSorteR 27

verbose = TRUE
)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
simulating bulk RNA-Seq data
countsBulk <- matrix(

stats::rpois(100, lambda = sample(seq(4, 10), size = 100, replace = TRUE)),
nrow = 40, ncol = 15,
dimnames = list(paste0("Gene", seq(40)), paste0("Bulk", seq(15)))

)
this is only an example. See vignettes to see how to use pre-trained models
from the digitalDLSorteRmodels data package
results1 <- deconvDDLSPretrained(

data = countsBulk,
model = trained.model(DDLS),
normalize = TRUE

)
simplify arguments
simplify <- list(CellGroup1 = c("CellType1", "CellType2", "CellType4"),

CellGroup2 = c("CellType3", "CellType5"))
in this case the names of the list will be the new labels
results2 <- deconvDDLSPretrained(

countsBulk,
model = trained.model(DDLS),
normalize = TRUE,
simplify.set = simplify

)
in this case the cell type with the highest proportion will be the new label
results3 <- deconvDDLSPretrained(

countsBulk,
model = trained.model(DDLS),
normalize = TRUE,
simplify.majority = simplify

)

End(Not run)

digitalDLSorteR digitalDLSorteR: an R package to deconvolute bulk RNA-Seq samples
using single-cell RNA-seq data and neural networks

28 DigitalDLSorter-class

Description

digitalDLSorteR is an R package that allows to deconvolute bulk RNA-seq data using context-
specific deconvolution models based on single-cell RNA-seq data and neural Networks. These
models are able to make accurate estimates of cell composition of bulk RNA-Seq samples from
the same context using the meaningful information provided by scRNA-seq data. See Torroja and
Sanchez-Cabo (2019) (doi:10.3389/fgene.2019.00978) and Mañanes et al., (2024) (doi:10.1093/
bioinformatics/btae072) for more details.

Details

The method consists of a workflow that starts from single-cell RNA-seq data and, after a few steps,
a neural network model is trained with simulated pseudo-bulk RNA-seq samples whose cell compo-
sition is known. These trained models are able to deconvolute new bulk RNA-seq samples from the
same biological context. Its main advantage is the possibility to build deconvolution models trained
with real data from certain biological environments. This fact tries to overcome the limitation of
other methods, since cell types may significantly change their transcriptional profiles depending on
tissue and disease context.

The package offers two usage ways: deconvolution of bulk RNA-seq samples using pre-trained
models available on the digitalDLSorteRmodels R package, or building new deconvolution mod-
els from already identified scRNA-seq data. See vignettes and https://diegommcc.github.io/
digitalDLSorteR/ for more details.

Author(s)

Maintainer: Diego Mañanes <dmananesc@cnic.es> (ORCID)

Authors:

• Carlos Torroja <ctorroja@cnic.es> (ORCID)
• Fatima Sanchez-Cabo <fscabo@cnic.es> (ORCID)

See Also

Useful links:

• https://diegommcc.github.io/digitalDLSorteR/

• https://github.com/diegommcc/digitalDLSorteR

• Report bugs at https://github.com/diegommcc/digitalDLSorteR/issues

DigitalDLSorter-class The DigitalDLSorter Class

Description

The DigitalDLSorter object is the core of digitalDLSorteR. This object stores different intermedi-
ate data resulting from the creation of new context-specific deconvolution models from single-cell
data. It is only used in the case of building new deconvolution models. To deconvolute bulk samples
using pre-trained models, see deconvDDLSPretrained function and the package digitalDLSorteR-
data.

https://doi.org/10.3389/fgene.2019.00978
https://doi.org/10.1093/bioinformatics/btae072
https://doi.org/10.1093/bioinformatics/btae072
https://diegommcc.github.io/digitalDLSorteR/
https://diegommcc.github.io/digitalDLSorteR/
https://orcid.org/0000-0001-7247-6794
https://orcid.org/0000-0001-8914-3400
https://orcid.org/0000-0003-1881-1664
https://diegommcc.github.io/digitalDLSorteR/
https://github.com/diegommcc/digitalDLSorteR
https://github.com/diegommcc/digitalDLSorteR/issues

DigitalDLSorter-class 29

Details

This object uses other classes to store the different types of data produced during the process:

• SingleCellExperiment class for single-cell RNA-Seq data, using sparse matrix from the
Matrix package (dgCMatrix class) or HDF5Array class in the case of using HDF5 files as
back-end (see below for more information).

• ZinbModel class with estimated parameters for the simulation of new single-cell profiles.
• SummarizedExperiment class for large bulk RNA-Seq data storage.
• ProbMatrixCellTypes class for the compositional cell matrices constructed during the pro-

cess. See ?ProbMatrixCellTypes for details.
• DigitalDLSorterDNN class to store the information related to Deep Neural Network models.

This step is performed using keras. See ?DigitalDLSorterDNN for details.

digitalDLSorteR can be used in two ways: to build new deconvolution models from single-cell
RNA-Seq data or to deconvolute bulk RNA-Seq samples using pre-trained models available at dig-
italDLSorteRdata package. If you want to build new models, see createDDLSobject function.
On the other hand, if you want to use pre-trained models, see deconvDDLSPretrained function.

In order to provide a way to work with large amounts of data on RAM-constrained machines, we
provide the possibility to use HDF5 files as back-end to store count matrices of both real/simulated
single-cell and bulk RNA-Seq profiles. For this, the package uses the HDF5Array and DelayedArray
classes from the homonymous packages.

Once the Deep Neural Network model has been trained trained, it is possible to save it as RDS or
HDF5 files. Please see DigitalDLSorterDNN for more details.

Slots

single.cell.real Real single-cell data stored in a SingleCellExperiment object. The count
matrix is stored as dgCMatrix or HDF5Array objects.

deconv.data List of SummarizedExperiment objects where it is possible to store new bulk RNA-
Seq experiments for deconvolution. The name of the entries corresponds to the name of the
data provided. See trainDDLSModel for details.

zinb.params ZinbModel object with estimated parameters for the simulation of new single-cell
expression profiles.

single.cell.simul Simulated single-cell expression profiles from the ZINB-WaVE model.
prob.cell.types ProbMatrixCellTypes class with cell composition matrices built for the sim-

ulation of pseudo-bulk RNA-Seq profiles with known cell composition.
bulk.simul A list of simulated train and test bulk RNA-Seq samples. Each entry is a SummarizedExperiment

object. The count matrices can be stored as HDF5Array files using HDF5 files as back-end in
case of RAM limitations.

trained.model DigitalDLSorterDNN object with all the information related to the trained model.
See ?DigitalDLSorterDNN for more details.

deconv.results Slot containing the deconvolution results of applying the deconvolution model
to the data present in the deconv.data slot. It is a list in which the names corresponds to the
data from which they come.

project Name of the project.
version Version of DigitalDLSorteR this object was built under.

30 DigitalDLSorterDNN-class

DigitalDLSorterDNN-class

The DigitalDLSorterDNN Class

Description

The DigitalDLSorterDNN object stores all the information related to Deep Neural Network models.
It contains the trained model, the training history and the results of prediction on test data. After
running calculateEvalMetrics, it is possible to find the performance evaluation of the model on
test data (see ?calculateEvalMetrics for details).

Details

The steps related to Deep Learning are carried out using the keras package which uses the R6
classes system. If you want to save the object as an RDS file, digitalDLSorteR provides a
saveRDS generic function that transforms the model stored as an R6 object into a native valid R
object. Specifically, the model is converted into a list with the architecture of the network and the
weights learned during training. That is the minimum information needed to use the model as pre-
dictor. If you want to keep the optimizer state, see ?saveTrainedModelAsH5. If you want to store
DigitalDLSorter object on disk as an RDA file, see ?preparingToSave.

Slots

model Trained Deep Neural Network. This slot can contain an R6 keras.engine.sequential.Sequential
object or a list with two elements: the architecture of the model and the resulting weights after
training.

training.history List with the evolution of the selected metrics during training.

test.metrics Performance of the model on test data.

test.pred Deconvolution results on test data. Columns are cell types, rows are samples and each
entry corresponds to the proportion of this cell type in this sample.

cell.types Vector with cell types to deconvolute.

features Vector with the features used during training. These features will be used in subsequent
predictions (the nomenclature used in new bulk RNA-Seq samples must be the same).

test.deconv.metrics Performance of the model on each sample of test data compared to known
cell proportions. This slot is used after calculateEvalMetrics (see ?calculateEvalMetrics
for more details).

distErrorPlot 31

distErrorPlot Generate box plots or violin plots to show how the errors are dis-
tributed

Description

Generate violin plots or box plots to show how the errors are distributed by proportion bins of 0.1.
Errors can be displayed all mixed or split by cell type (CellType) or number of cell types present
in the samples (nCellTypes). See the facet.by argument and examples for more details.

Usage

distErrorPlot(
object,
error,
colors,
x.by = "pBin",
facet.by = NULL,
color.by = "nCellTypes",
filter.sc = TRUE,
error.label = FALSE,
pos.x.label = 4.6,
pos.y.label = NULL,
size.point = 0.1,
alpha.point = 1,
type = "violinplot",
ylimit = NULL,
nrow = NULL,
ncol = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object DigitalDLSorter object with trained.model slot containing metrics in the
test.deconv.metrics slot of a DigitalDLSorterDNN object.

error The error to be represented. Available errors are absolute error ('AbsErr'),
proportional absolute error ('ppAbsErr'), squared error ('SqrErr') and pro-
portional squared error ('ppSqrErr').

colors Vector of colors to be used. Only vectors with a number of colors equal to or
greater than the levels of color.by will be accepted. By default, a custom color
list is used.

x.by Variable used for the X-axis. When facet.by is not NULL, the best choice is
pBin (probability bins). The options are nCellTypes (number of different cell
types), CellType (cell type) and pBin.

32 distErrorPlot

facet.by Variable used to display data in different panels. If NULL, the plot is not split into
different panels. Options are nCellTypes (number of different cell types) and
CellType (cell type).

color.by Variable used to color the data. Options are nCellTypes and CellType.

filter.sc Boolean indicating whether single-cell profiles are filtered out and only errors
associated with pseudo-bulk samples are displayed (TRUE by default).

error.label Boolean indicating whether to display the average error as a plot annotation
(FALSE by default).

pos.x.label X-axis position of error annotations.

pos.y.label Y-axis position of error annotations.

size.point Size of points (0.1 by default).

alpha.point Alpha of points (0.1 by default).

type Type of plot: 'boxplot' or 'violinplot'. The latter by default.

ylimit Upper limit in Y-axis if it is required (NULL by default).

nrow Number of rows if facet.by is not NULL.

ncol Number of columns if facet.by is not NULL.

title Title of the plot.

theme ggplot2 theme.

... Additional arguments for the facet_wrap function from ggplot2 if facet.by is
not NULL.

Value

A ggplot object with the representation of the desired errors.

See Also

calculateEvalMetrics corrExpPredPlot blandAltmanLehPlot barErrorPlot

Examples

Not run:
set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

distErrorPlot 33

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(6)),
from = c(1, 1, 1, 15, 15, 30),
to = c(15, 15, 30, 50, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 50,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
DDLS <- calculateEvalMetrics(

object = DDLS
)
representation, for more examples, see the vignettes
distErrorPlot(

object = DDLS,
error = "AbsErr",
facet.by = "CellType",
color.by = "nCellTypes",
error.label = TRUE

)
distErrorPlot(

object = DDLS,
error = "AbsErr",
x.by = "CellType",
facet.by = NULL,
filter.sc = FALSE,
color.by = "CellType",
error.label = TRUE

)

34 estimateZinbwaveParams

End(Not run)

estimateZinbwaveParams

Estimate the parameters of the ZINB-WaVE model to simulate new
single-cell RNA-Seq expression profiles

Description

Estimate the parameters of the ZINB-WaVE model using a real single-cell RNA-Seq data set as
reference to simulate new single-cell profiles and increase the signal of underrepresented cell types.
This step is optional, only is needed if the size of you dataset is too small or there are underrepre-
sented cell types in order to train the Deep Neural Network model in a more balanced way. After
this step, the simSCProfiles function will use the estimated parameters to simulate new single-cell
profiles. See ?simSCProfiles for more information.

Usage

estimateZinbwaveParams(
object,
cell.type.column,
cell.ID.column,
gene.ID.column,
cell.cov.columns,
gene.cov.columns,
subset.cells = NULL,
proportional = TRUE,
set.type = "All",
threads = 1,
verbose = TRUE

)

Arguments

object DigitalDLSorter object with a single.cell.real slot.
cell.type.column

Name or column number corresponding to the cell type of each cell in cells
metadata.

cell.ID.column Name or column number corresponding to the cell names of expression matrix
in cells metadata.

gene.ID.column Name or column number corresponding to the notation used for features/genes
in genes metadata.

cell.cov.columns

Name or column number(s) in cells metadata to be used as covariates during
model fitting (if no covariates are used, set to empty or NULL).

estimateZinbwaveParams 35

gene.cov.columns

Name or column number(s) in genes metadata that will be used as covariates
during model fitting (if no covariates are used, set to empty or NULL).

subset.cells Number of cells to fit the ZINB-WaVE model. Useful when the original data set
is too large to fit the model. Set a value according to the original data set and the
resources available on your computer. If NULL (by default), all cells will be used.
Must be an integer greater than or equal to the number of cell types considered
and less than or equal to the total number of cells.

proportional If TRUE, the original cell type proportions in the subset of cells generated by
subset.cells will not be altered as far as possible. If FALSE, all cell types will
have the same number of cells as far as possible (TRUE by default).

set.type Cell type(s) to evaluate ('All' by default). It is recommended fitting the model
to all cell types rather than using only a subset of them to capture the total
variability present in the original experiment even if only a subset of cell types
is simulated.

threads Number of threads used for estimation (1 by default). To set up the parallel
environment, the BiocParallel package must be installed.

verbose Show informative messages during the execution (TRUE by default).

Details

ZINB-WaVE is a flexible model for zero-inflated count data. This function carries out the model
fit to real single-cell data modeling Yij (the count of feature j for sample i) as a random variable
following a zero-inflated negative binomial (ZINB) distribution. The estimated parameters will
be used for the simulation of new single-cell expression profiles by sampling a negative binomial
distribution and inserting dropouts from a binomial distribution. To do so, digitalDLSorteR uses
the zinbFit function from the zinbwave package (Risso et al., 2018). For more details about the
model, see Risso et al., 2018.

Value

A DigitalDLSorter object with zinb.params slot containing a ZinbParametersModel object.
This object contains a slot with the estimated ZINB-WaVE parameters from the real single-cell
RNA-Se‘q data.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978.

See Also

simSCProfiles

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.3389/fgene.2019.00978

36 features

Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
DDLS <- estimateZinbwaveParams(

object = DDLS,
cell.type.column = "Cell_Type",
cell.ID.column = "Cell_ID",
gene.ID.column = "Gene_ID",
subset.cells = 2,
verbose = TRUE

)

features Get and set features slot in a DigitalDLSorterDNN object

Description

Get and set features slot in a DigitalDLSorterDNN object

Usage

features(object)

features(object) <- value

generateBulkCellMatrix 37

Arguments

object DigitalDLSorterDNN object.

value Vector with features (genes) considered by the Deep Neural Network model.

generateBulkCellMatrix

Generate training and test cell composition matrices

Description

Generate training and test cell composition matrices for the simulation of pseudo-bulk RNA-Seq
samples with known cell composition using single-cell expression profiles. The resulting ProbMatrixCellTypes
object contains a matrix that determines the proportion of the different cell types that will compose
the simulated pseudo-bulk samples. In addition, this object also contains other information relevant
for the process. This function does not simulate pseudo-bulk samples, this task is performed by the
simBulkProfiles or trainDDLSModel functions (see Documentation).

Usage

generateBulkCellMatrix(
object,
cell.ID.column,
cell.type.column,
prob.design,
num.bulk.samples,
n.cells = 100,
train.freq.cells = 3/4,
train.freq.bulk = 3/4,
proportion.method = c(10, 5, 20, 15, 35, 15),
prob.sparsity = 0.5,
min.zero.prop = NULL,
balanced.type.cells = FALSE,
verbose = TRUE

)

Arguments

object DigitalDLSorter object with single.cell.real slot and, optionally, with
single.cell.simul slot.

cell.ID.column Name or column number corresponding to the cell names of expression matrix
in cells metadata.

cell.type.column

Name or column number corresponding to the cell type of each cell in cells
metadata.

38 generateBulkCellMatrix

prob.design Data frame with the expected frequency ranges for each cell type present in
the experiment. This information can be estimated from literature or from the
single-cell experiment itself. This data frame must be constructed by three
columns with specific headings (see examples):

• A cell type column with the same name of the cell type column in cells
metadata (cell.type.column). If the name of the column is not the same,
the function will return an error. All cell types must appear in the cells
metadata.

• A second column called 'from' with the start frequency for each cell type.

• A third column called 'to' with the ending frequency for each cell type.

num.bulk.samples

Number of bulk RNA-Seq sample proportions (and thus simulated bulk RNA-
Seq samples) to be generated taking into account training and test data. We rec-
ommend seting this value according to the number of single-cell profiles avail-
able in DigitalDLSorter object avoiding an excesive re-sampling, but generat-
ing a large number of samples for better training.

n.cells Number of cells that will be aggregated in order to simulate one bulk RNA-Seq
sample (100 by default).

train.freq.cells

Proportion of cells used to simulate training pseudo-bulk samples (2/3 by de-
fault).

train.freq.bulk

Proportion of bulk RNA-Seq samples to the total number (num.bulk.samples)
used for the training set (2/3 by default).

proportion.method

Vector of six integers that determines the proportions of bulk samples generated
by the different methods (see Details and Torroja and Sanchez-Cabo, 2019. for
more information). This vector represents proportions, so its entries must add
up 100. By default, a majority of random samples will be generated without
using predefined ranges.

prob.sparsity It only affects the proportions generated by the first method (Dirichlet distribu-
tion). It determines the probability of having missing cell types in each sim-
ulated spot, as opposed to a mixture of all cell types. A higher value for this
parameter will result in more sparse simulated samples.

min.zero.prop This parameter controls the minimum number of cell types that will be absent in
each simulated spot. If NULL (by default), this value will be half of the total num-
ber of different cell types, but increasing it will result in more spots composed
of fewer cell types. This helps to create more sparse proportions and cover a
wider range of situations during model training.

balanced.type.cells

Boolean indicating whether the training and test cells will be split in a balanced
way considering the cell types (FALSE by default).

verbose Show informative messages during the execution (TRUE by default).

generateBulkCellMatrix 39

Details

First, the available single-cell profiles are split into training and test subsets (2/3 for training and
1/3 for test by default (see train.freq.cells)) to avoid falsifying the results during model evalu-
ation. Next, num.bulk.samples bulk samples proportions are built and the single-cell profiles to be
used to simulate each pseudo-bulk RNA-Seq sample are set, being 100 cells per bulk sample by de-
fault (see n.cells argument). The proportions of training and test pseudo-bulk samples are set by
train.freq.bulk (2/3 for training and 1/3 for testing by default). Finally, in order to avoid biases
due to the composition of the pseudo-bulk RNA-Seq samples, cell type proportions (w1, ..., wk,
where k is the number of cell types available in single-cell profiles) are randomly generated by
using six different approaches:

1. Cell proportions are randomly sampled from a truncated uniform distribution with predefined
limits according to a priori knowledge of the abundance of each cell type (see prob.design
argument). This information can be inferred from the single-cell experiment itself or from the
literature.

2. A second set is generated by randomly permuting cell type labels from a distribution generated
by the previous method.

3. Cell proportions are randomly sampled as by method 1 without replacement.

4. Using the last method for generating proportions, cell types labels are randomly sampled.

5. Cell proportions are randomly sampled from a Dirichlet distribution.

6. Pseudo-bulk RNA-Seq samples composed of the same cell type are generated in order to
provide ’pure’ pseudo-bulk samples.

If you want to inspect the distribution of cell type proportions generated by each method during the
process, they can be visualized by the showProbPlot function (see Documentation).

Value

A DigitalDLSorter object with prob.cell.types slot containing a list with two ProbMatrixCellTypes
objects (training and test). For more information about the structure of this class, see ?ProbMatrixCellTypes.

References

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978

See Also

simBulkProfiles ProbMatrixCellTypes

Examples

set.seed(123) # reproducibility
simulated data
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

https://doi.org/10.3389/fgene.2019.00978

40 getProbMatrix

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 10,
verbose = TRUE

)

getProbMatrix Getter function for the cell composition matrix

Description

Getter function for the cell composition matrix. This function allows to access to the cell composi-
tion matrix of simulated training or test pseudo-bulk RNA-Seq data.

Usage

getProbMatrix(object, type.data)

Arguments

object DigitalDLSorter object with prob.cell.types slot.
type.data Subset of data to e shown: train or test.

installTFpython 41

Value

A matrix object with the desired cell proportion matrix.

See Also

generateBulkCellMatrix

installTFpython Install Python dependencies for digitalDLSorteR

Description

This is a helper function to install Python dependencies needed: a Python interpreter with Tensor-
Flow Python library and its dependencies. It is performed using the reticulate package and the
installer of the tensorflow R package. The available options are virtual or conda environments. The
new environment is called digitaldlsorter-env. In any case, this installation can be manually done as
it is explained in https://diegommcc.github.io/digitalDLSorteR/articles/kerasIssues.
html, but we recommend using this function.

Usage

installTFpython(
conda = "auto",
python.version = "3.8",
tensorflow.version = "2.6",
install.conda = FALSE,
miniconda.path = NULL

)

Arguments

conda Path to a conda executable. Use "auto" (by default) allows reticulate to auto-
matically find an appropriate conda binary.

python.version Python version to be installed in the environment ("3.8" by default). We recom-
mend keeping this version as it has been tested to be compatible with tensorflow
2.6.

tensorflow.version

Tensorflow version to be installed in the environment ("2.6" by default).

install.conda Boolean indicating if install miniconda automatically using reticulate. If TRUE,
conda argument is ignored. FALSE by default.

miniconda.path If install.conda is TRUE, you can set the path where miniconda will be in-
stalled. If NULL, conda will find automatically the proper place.

https://diegommcc.github.io/digitalDLSorteR/articles/kerasIssues.html
https://diegommcc.github.io/digitalDLSorteR/articles/kerasIssues.html

42 interGradientsDL

Details

This function is intended to make easier the installation of the requirements needed to use dig-
italDLSorteR. It will automatically install Miniconda (if wanted, see Parameters) and create an
environment called ’digitaldlsorter-env’. If you want to use other python/conda environment, see
?tensorflow::use_condaenv and/or the vignettes.

Value

No return value, called for side effects: installation of conda environment with a Python interpreter
and Tensorflow

Examples

Not run:
notesInstallation <- installTFpython(

method = "auto", conda = "auto", install.conda = TRUE
)

End(Not run)

interGradientsDL Calculate gradients of predicted cell types/loss function with respect
to input features for interpreting trained deconvolution models

Description

This function enables users to gain insights into the interpretability of the deconvolution model. It
calculates the gradients of classes/loss function with respect to the input features used in training.
These numeric values are calculated per gene and cell type in pure mixed transcriptional profiles,
providing information on the extent to which each feature influences the model’s prediction of cell
proportions for each cell type.

Usage

interGradientsDL(
object,
method = "class",
normalize = TRUE,
scaling = "standardize",
verbose = TRUE

)

interGradientsDL 43

Arguments

object DigitalDLSorter object containing a trained deconvolution model (trained.model
slot) and pure mixed transcriptional profiles (bulk.simul slot).

method Method to calculate gradients with respect to inputs. It can be 'class' (gradi-
ents of predicted classes w.r.t. inputs), 'loss' (gradients of loss w.r.t. inputs) or
'both'.

normalize Whether to normalize data using logCPM (TRUE by default). This parameter
is only considered when the method used to simulate the mixed transcriptional
profiles (simMixedProfiles function) was "AddRawCount". Otherwise, data
were already normalized. This parameter should be set according to the trans-
formation used to train the model.

scaling How to scale data. It can be: "standardize" (values are centered around the
mean with a unit standard deviation), "rescale" (values are shifted and rescaled
so that they end up ranging between 0 and 1, by default) or "none" (no scaling is
performed). This parameter should be set according to the transformation used
to train the model.

verbose Show informative messages during the execution (TRUE by default).

Details

Gradients of classes / loss function with respect to the input features are calculated exclusively using
pure mixed transcriptional profiles composed of a single cell type. Consequently, these numbers can
be interpreted as the extent to which each feature is being used to predict each cell type proportion.
Gradients are calculated at the sample level for each gene, but only mean gradients by cell type are
reported. For additional details, see Mañanes et al., 2024.

Value

Object containing gradients in the interpret.gradients slot of the DigitalDLSorterDNN object
(trained.model slot).

See Also

deconvDDLSObj plotTrainingHistory

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)

44 listToDDLS

),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
prop.design <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = prop.design,
num.bulk.samples = 50,
verbose = TRUE

)
DDLS <- simBulkProfiles(DDLS)
DDLS <- trainDDLSModel(

object = DDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients
DDLS <- interGradientsDL(DDLS)

listToDDLS Transform DigitalDLSorter-like list into an actual DigitalDLSor-
terDNN object

Description

Transform DigitalDLSorter-like list into an actual DigitalDLSorter object. This function allows
to generate the examples and the vignettes of digitalDLSorteR package as these are the data used.
These data are stored in the digitalDLSorteRdata package.

Usage

listToDDLS(listTo)

listToDDLSDNN 45

Arguments

listTo A list in which each element must correspond to each slot of an DigitalDLSorter
object. The names must be the same as the slot names.

Value

DigitalDLSorter object the data provided in the original list.

See Also

listToDDLSDNN

listToDDLSDNN Transform DigitalDLSorterDNN-like list into an actual DigitalDLSor-
terDNN object

Description

Transform DigitalDLSorterDNN-like list into an actual DigitalDLSorterDNN object. This function
allows to use pre-trained models in the digitalDLSorteR package. These models are stored in the
digitalDLSorteRmodels package.

Usage

listToDDLSDNN(listTo)

Arguments

listTo A list in which each element must correspond to each slot of an DigitalDLSorterDNN
object. The names must be the same as the slot names.

Value

DigitalDLSorterDNN object with the data provided in the original list.

See Also

listToDDLS

46 loadTrainedModelFromH5

loadDeconvData Load data to be deconvoluted into a DigitalDLSorter object

Description

Load data to be deconvoluted. Data can be provided from a file path of a tabulated text file (tsv and
tsv.gz formats are accepted) or a SummarizedExperiment object.

Usage

loadDeconvData(object, data, name.data = NULL)

S4 method for signature 'DigitalDLSorter,character'
loadDeconvData(object, data, name.data = NULL)

S4 method for signature 'DigitalDLSorter,SummarizedExperiment'
loadDeconvData(object, data, name.data = NULL)

Arguments

object DigitalDLSorter object with trained.model slot.

data File path where the data is stored or a SummarizedExperiment object.

name.data Name under which the data is stored in the DigitalDLSorter object. When
data is a file path and name.data is not provided, the base name of file will be
used.

Value

A DigitalDLSorter object with deconv.data slot with the new bulk-RNA-Seq samples loaded.

See Also

trainDDLSModel deconvDDLSObj

loadTrainedModelFromH5

Load from an HDF5 file a trained Deep Neural Network model into a
DigitalDLSorter object

Description

Load from an HDF5 file a trained Deep Neural Network model into a DigitalDLSorter object.
Note that HDF5 file must be a valid trained model (keras object).

method 47

Usage

loadTrainedModelFromH5(object, file.path, reset.slot = FALSE)

Arguments

object DigitalDLSorter object with trained.model slot.

file.path Valid file path where the model are stored.

reset.slot Deletes trained.slot if it already exists. A new DigitalDLSorterDNN object
will be formed, but will not contain other slots (FALSE by default).

Value

DigitalDLSorter object with trained.model slot with the new keras DNN model incorporated.

See Also

trainDDLSModel deconvDDLSObj saveTrainedModelAsH5

method Get and set method slot in a ProbMatrixCellTypes object

Description

Get and set method slot in a ProbMatrixCellTypes object

Usage

method(object)

method(object) <- value

Arguments

object ProbMatrixCellTypes object.

value Vector with names of cells present in the object.

48 plotHeatmapGradsAgg

model Get and set model slot in a DigitalDLSorterDNN object

Description

Get and set model slot in a DigitalDLSorterDNN object

Usage

model(object)

model(object) <- value

Arguments

object DigitalDLSorterDNN object.
value keras.engine.sequential.Sequential object with a trained Deep Neural

Network model.

plotHeatmapGradsAgg Plot a heatmap of gradients of classes / loss function wtih respect to
the input

Description

Plot a heatmap showing the top positive and negative gene average gradients per cell type.

Usage

plotHeatmapGradsAgg(
object,
method = "class",
top.n.genes = 15,
scale.gradients = TRUE

)

Arguments

object DigitalDLSorter object with a DigitalDLSorterDNN object containing gradi-
ents in the interpret.gradients slot.

method Method to calculate gradients with respect to input features. It can be 'class'
(gradients of predicted classes w.r.t. input features) or 'loss' (gradients of loss
w.r.t. input features) ('class' by default).

top.n.genes Top n genes (positive and negative) taken per cell type.
scale.gradients

Whether to calculate feature-wise z-scores of gradients (TRUE by default).

plotHeatmapGradsAgg 49

Value

A list of Heatmap-class objects, one for top positive and another one for top negative gradients.

See Also

interGradientsDL trainDDLSModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
prop.design <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = prop.design,
num.bulk.samples = 50,
verbose = TRUE

)
DDLS <- simBulkProfiles(DDLS)
DDLS <- trainDDLSModel(

object = DDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients

50 plotTrainingHistory

DDLS <- interGradientsDL(DDLS)
plotHeatmapGradsAgg(DDLS, top.n.genes = 2)

plots Get and set plots slot in a ProbMatrixCellTypes object

Description

Get and set plots slot in a ProbMatrixCellTypes object

Usage

plots(object)

plots(object) <- value

Arguments

object ProbMatrixCellTypes object.

value List of lists with plots showing the distribution of the cell proportions generated
by each method during the process.

plotTrainingHistory Plot training history of a trained DigitalDLSorter Deep Neural Net-
work model

Description

Plot training history of a trained DigitalDLSorter Deep Neural Network model.

Usage

plotTrainingHistory(
object,
title = "History of metrics during training",
metrics = NULL

)

Arguments

object DigitalDLSorter object with trained.model slot.

title Title of plot.

metrics Metrics to be plotted. If NULL (by default), all metrics available in the DigitalDLSorterDNN
object will be plotted.

preparingToSave 51

Value

A ggplot object with the progression of the selected metrics during training.

See Also

trainDDLSModel deconvDDLSObj

preparingToSave Prepare DigitalDLSorter object to be saved as an RDA file

Description

Prepare a DigitalDLSorter object that has a DigitalDLSorterDNN object with a trained DNN
model. keras models cannot be stored natively as R objects (e.g. RData or RDS files). By saving
the structure as a JSON-like character object and the weights as a list, it is possible to retrieve the
model and make predictions. Note: with this option, the state of optimizer is not saved, only the
architecture and weights.

Usage

preparingToSave(object)

Arguments

object DigitalDLSorter object with the trained.data slot.

Details

It is possible to save the entire model as an HDF5 file with the saveTrainedModelAsH5 function
and to load it into a DigitalDLSorter object with the loadTrainedModelFromH5 function.

It is also possible to save a DigitalDLSorter object as an RDS file with the saveRDS function
without any preparation.

Value

A DigitalDLSorter or DigitalDLSorterDNN object with its trained keras model transformed from
a keras.engine.sequential.Sequential class into a list with the architecture as a JSON-like
character object and the weights as a list.

See Also

saveRDS saveTrainedModelAsH5

52 prob.matrix

prob.cell.types Get and set prob.cell.types slot in a DigitalDLSorter object

Description

Get and set prob.cell.types slot in a DigitalDLSorter object

Usage

prob.cell.types(object, type.data = "both")

prob.cell.types(object, type.data = "both") <- value

Arguments

object DigitalDLSorter object.

type.data Element of the list. Can be 'train', 'test' or 'both' (the last by default).

value List with two elements, train and test, each one with a ProbMatrixCellTypes
object.

prob.matrix Get and set prob.matrix slot in a ProbMatrixCellTypes object

Description

Get and set prob.matrix slot in a ProbMatrixCellTypes object

Usage

prob.matrix(object)

prob.matrix(object) <- value

Arguments

object ProbMatrixCellTypes object.

value Matrix with cell types as columns and samples as rows.

ProbMatrixCellTypes-class 53

ProbMatrixCellTypes-class

The Class ProbMatrixCellTypes

Description

The ProbMatrixCellTypes class is a data storage class that contains information related to the cell
composition matrices used for the simulation of pseudo-bulk RNA-Seq samples. The matrix is
stored in the prob.matrix slot. The other of slots contain additional information generated during
the process and required in subsequent steps.

Details

As described in Torroja and Sanchez-Cabo, 2019, the proportions are constructed using six different
methods in order to avoid biases due to the composition of the simulated bulk samples. In plots
slot, plots are stored that visually represent the distribution of these probabilities in order to provide
a way to monitor the different sets of samples generated. These plots can be shown using the
showProbPlot function (see ?showProbPlot for more details).

Slots

prob.matrix Matrix of cell proportions generated for the simulation of bulk samples. Rows cor-
respond to the bulk samples to be generated (i), columns are the cell types present in the
provided single-cell data (j) and each entry is the proportion of j cell type in i sample.

cell.names Matrix containing the names of the cells that will make up each simulated pseudo-bulk
sample.

set.list List of cells sorted according to the cell type they belong to.

set Vector containing the cell names present in the object.

plots List of lists with plots showing the distribution of the cell proportions generated by each
method during the process. In each list, boxplot, violinplot, linesplot or ncelltypes
can be found. Please see showProbPlot for more details.

type.data Character with the type of data contained: training or test.

References

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978

https://doi.org/10.3389/fgene.2019.00978

54 saveRDS

project Get and set project slot in a DigitalDLSorter object

Description

Get and set project slot in a DigitalDLSorter object

Usage

project(object)

project(object) <- value

Arguments

object DigitalDLSorter object.

value Character indicating the name of the project.

saveRDS Save DigitalDLSorter objects as RDS files

Description

Save DigitalDLSorter and DigitalDLSorterDNN objects as RDS files. keras models cannot
be stored natively as R objects (e.g. RData or RDS files). By saving the structure as a JSON-like
character object and the weights as a list, it is possible to retrieve the model and make predictions. If
the trained.model slot is empty, the function will behave as usual. Note: with this option, the state
of optimizer is not saved, only the architecture and weights. It is possible to save the entire model
as an HDF5 file with the saveTrainedModelAsH5 function and to load it into a DigitalDLSorter
object with the loadTrainedModelFromH5 function. See documentation for details.

Usage

saveRDS(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'DigitalDLSorterDNN'
saveRDS(
object,

saveTrainedModelAsH5 55

file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'DigitalDLSorter'
saveRDS(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

Arguments

object DigitalDLSorter or DigitalDLSorterDNN object to be saved
file File path where the object will be saved
ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (default),

a binary one is used. See the comments in the help for save.
version the workspace format version to use. NULL specifies the current default version

(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.
compress a logical specifying whether saving to a named file is to use "gzip" compres-

sion, or one of "gzip", "bzip2" or "xz" to indicate the type of compression to
be used. Ignored if file is a connection.

refhook a hook function for handling reference objects.

Value

No return value, saves a DigitalDLSorter object as an RDS file on disk.

See Also

DigitalDLSorter saveTrainedModelAsH5

saveTrainedModelAsH5 Save a trained DigitalDLSorter Deep Neural Network model to disk
as an HDF5 file

Description

Save a trained DigitalDLSorter Deep Neural Network model to disk as an HDF5 file. Note that
this function does not save the DigitalDLSorterDNN object, but the trained keras model. This is
the alternative to the saveRDS and preparingToSave functions if you want to keep the state of the
optimizer.

56 set

Usage

saveTrainedModelAsH5(object, file.path, overwrite = FALSE)

Arguments

object DigitalDLSorter object with trained.model slot.

file.path Valid file path where to save the model to.

overwrite Overwrite file if it already exists.

Value

No return value, saves a keras DNN trained model as HDF5 file on disk.

See Also

trainDDLSModel loadTrainedModelFromH5

set Get and set set slot in a ProbMatrixCellTypes object

Description

Get and set set slot in a ProbMatrixCellTypes object

Usage

set(object)

set(object) <- value

Arguments

object ProbMatrixCellTypes object.

value Vector with names of cells present in the object.

set.list 57

set.list Get and set set.list slot in a ProbMatrixCellTypes object

Description

Get and set set.list slot in a ProbMatrixCellTypes object

Usage

set.list(object)

set.list(object) <- value

Arguments

object ProbMatrixCellTypes object.

value List of cells sorted according to the cell type to which they belong.

showProbPlot Show distribution plots of the cell proportions generated by
generateBulkCellMatrix

Description

Show distribution plots of the cell proportions generated by generateBulkCellMatrix. These fre-
quencies will determine the proportion of different cell types used during the simulation of pseudo-
bulk RNA-Seq samples. There are 6 subsets of proportions generated by different approaches that
can be visualized in three ways: box plots, violin plots and lines plots. You can also plot the prob-
abilities based on the number of different cell types present in the samples by setting type.plot =
'nCellTypes'.

Usage

showProbPlot(object, type.data, set, type.plot = "boxplot")

Arguments

object DigitalDLSorter object with prob.cell.types slot with plot slot.

type.data Subset of data to show: train or test.

set Integer determining which of the 6 different subsets to display.

type.plot Character determining which type of visualization to display. It can be 'boxplot',
'violinplot', 'linesplot' or 'ncelltypes'. See Description for more in-
formation.

58 showProbPlot

Details

These plots are only for diagnostic purposes. This is the reason because they are generated without
any parameter introduced by the user.

Value

A ggplot object.

See Also

generateBulkCellMatrix

Examples

simulating data
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrix <- data.frame(

Cell_Type = paste0("CellType", seq(4)),
from = c(1, 1, 1, 30),
to = c(15, 15, 50, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrix,
num.bulk.samples = 60

)
lapply(

simBulkProfiles 59

X = 1:6, FUN = function(x) {
showProbPlot(

DDLS,
type.data = "train",
set = x,
type.plot = "boxplot"

)
}

)

simBulkProfiles Simulate training and test pseudo-bulk RNA-Seq profiles

Description

Simulate training and test pseudo-bulk RNA-Seq profiles using the cell composition matrices gener-
ated by the generateBulkCellMatrix function. The samples are generated under the assumption
that the expression level of the i gene in the j bulk sample is given by the sum of the expression lev-
els of the cell types Xijk that make them up weighted by the proportions of these k cell types in each
sample. In practice, as described in Torroja and Sanchez-Cabo, 2019, these profiles are generated
by summing a number of cells of different cell types determined by proportions from a matrix of
known cell composition. The number of simulated pseudo-bulk RNA-Seq samples and the number
of cells composing each sample are determined by generateBulkCellMatrix (see Documenta-
tion) Note: this step can be avoided by using the on.the.fly argument in the trainDDLSModel
function. See Documentation for more information.

Usage

simBulkProfiles(
object,
type.data = "both",
pseudobulk.function = "AddRawCount",
file.backend = NULL,
compression.level = NULL,
block.processing = FALSE,
block.size = 1000,
chunk.dims = NULL,
threads = 1,
verbose = TRUE

)

Arguments

object DigitalDLSorter object with single.cell.real/single.cell.simul and prob.cell.types
slots.

type.data Type of data to generate between 'train', 'test' or 'both' (the last by de-
fault).

60 simBulkProfiles

pseudobulk.function

Function used to build pseudo-bulk samples. It may be:

• "MeanCPM": single-cell profiles (raw counts) are transformed into CPMs
and cross-cell averages are calculated. Then, log2(CPM + 1) is calculated.

• "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and
are added up across cells. Then, log-CPMs are calculated.

• "AddRawCount": single-cell profiles (raw counts) are added up across cells.
Then, log-CPMs are calculated.

file.backend Valid file path to store the simulated single-cell expression profiles as an HDF5
file (NULL by default). If provided, the data is stored in HDF5 files used as
back-end by using the DelayedArray, HDF5Array and rhdf5 packages instead
of loading all data into RAM memory. This is suitable for situations where
you have large amounts of data that cannot be loaded into memory. Note that
operations on this data will be performed in blocks (i.e subsets of determined
size) which may result in longer execution times.

compression.level

The compression level used if file.backend is provided. It is an integer value
between 0 (no compression) and 9 (highest and slowest compression). See
?getHDF5DumpCompressionLevel from the HDF5Array package for more in-
formation.

block.processing

Boolean indicating whether the data should be simulated in blocks (only if
file.backend is used, FALSE by default). This functionality is suitable for
cases where is not possible to load all data into memory and it leads to larger
execution times.

block.size Only if block.processing = TRUE. Number of pseudo-bulk expression profiles
that will be simulated in each iteration during the process. Larger numbers result
in higher memory usage but shorter execution times. Set according to available
computational resources (1000 by default).

chunk.dims Specifies the dimensions that HDF5 chunk will have. If NULL, the default value
is a vector of two items: the number of genes considered by DigitalDLSorter
object during the simulation, and a single sample to reduce read times in the
following steps. A larger number of columns written in each chunk can lead to
longer read times.

threads Number of threads used during the simulation of pseudo-bulk samples (1 by
default). Set according to computational resources and avoid it if block.size
will be used.

verbose Show informative messages during the execution (TRUE by default).

Details

digitalDLSorteR allows the use of HDF5 files as back-end to store the resulting data using the
DelayedArray and HDF5Array packages. This functionality allows to work without keeping the
data loaded into RAM, which could be of vital importance during some computationally heavy
steps such as neural network training on RAM-limited machines. You must provide a valid file path
in the file.backend argument to store the resulting file with the ’.h5’ extension. The data will be
accessible from R without being loaded into memory. This option slightly slows down execution

simBulkProfiles 61

times, as subsequent transformations of the data will be done in blocks rather than using all the data.
We recommend this option according to the computational resources available and the number of
pseudo-bulk samples to be generated.

Note that if you use the file.backend argument with block.processing = FALSE, all pseudo-
bulk profiles will be simulated in one step and, therefore, loaded into RAM. Then, the data will be
written to an HDF5 file. To avoid the RAM collapse, pseudo-bulk profiles can be simulated and
written to HDF5 files in blocks of block.size size by setting block.processing = TRUE.

It is possible to avoid this step by using the on.the.fly argument in the trainDDLSModel function.
In this way, data is generated ’on the fly’ during the neural network training. For more details, see
?trainDDLSModel.

Value

A DigitalDLSorter object with bulk.simul slot containing a list with one or two entries (depend-
ing on selected type.data argument): 'train' and 'test'. Each entry contains a SummarizedExperiment
object with simulated bulk samples in the assay slot, sample names in the colData slot and feature
names in the rowData slot.

References

Fischer B, Smith M and Pau, G (2020). rhdf5: R Interface to HDF5. R package version 2.34.0.

Pagès H, Hickey P and Lun A (2020). DelayedArray: A unified framework for working transpar-
ently with on-disk and in-memory array-like datasets. R package version 0.16.0.

Pagès H (2020). HDF5Array: HDF5 backend for DelayedArray objects. R package version 1.18.0.

See Also

generateBulkCellMatrix ProbMatrixCellTypes trainDDLSModel

Examples

set.seed(123) # reproducibility
simulated data
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

62 simSCProfiles

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 10,
verbose = TRUE

)
DDLS <- simBulkProfiles(DDLS, verbose = TRUE)

simSCProfiles Simulate new single-cell RNA-Seq expression profiles using the ZINB-
WaVE model parameters

Description

Simulate single-cell expression profiles by randomly sampling from a negative binomial distribution
and inserting dropouts by sampling from a binomial distribution using the ZINB-WaVE parameters
estimated by the estimateZinbwaveParams function.

Usage

simSCProfiles(
object,
cell.ID.column,
cell.type.column,
n.cells,
suffix.names = "_Simul",
cell.types = NULL,
file.backend = NULL,
name.dataset.backend = NULL,
compression.level = NULL,
block.processing = FALSE,
block.size = 1000,
chunk.dims = NULL,
verbose = TRUE

)

simSCProfiles 63

Arguments

object DigitalDLSorter object with single.cell.real and zinb.params slots.
cell.ID.column Name or column number corresponding to the cell names of expression matrix

in cells metadata.
cell.type.column

Name or column number corresponding to the cell type of each cell in cells
metadata.

n.cells Number of simulated cells generated per cell type (i.e. if you have 10 differ-
ent cell types in your dataset, if n.cells = 100, then 1000 cell profiles will be
simulated).

suffix.names Suffix used on simulated cells. This suffix must be unique in the simulated cells,
so make sure that this suffix does not appear in the real cell names.

cell.types Vector indicating the cell types to simulate. If NULL (by default), n.cells single-
cell profiles for all cell types will be simulated.

file.backend Valid file path to store the simulated single-cell expression profiles as an HDF5
file (NULL by default). If provided, the data is stored in HDF5 files used as
back-end by using the DelayedArray, HDF5Array and rhdf5 packages instead
of loading all data into RAM memory. This is suitable for situations where
you have large amounts of data that cannot be loaded into memory. Note that
operations on this data will be performed in blocks (i.e subsets of determined
size) which may result in longer execution times.

name.dataset.backend

Name of the dataset in HDF5 file to be used. Note that it cannot exist. If NULL
(by default), a random dataset name will be used.

compression.level

The compression level used if file.backend is provided. It is an integer value
between 0 (no compression) and 9 (highest and slowest compression). See
?getHDF5DumpCompressionLevel from the HDF5Array package for more in-
formation.

block.processing

Boolean indicating whether the data should be simulated in blocks (only if
file.backend is used, FALSE by default). This functionality is suitable for
cases where is not possible to load all data into memory and it leads to larger
execution times.

block.size Only if block.processing = TRUE. Number of single-cell expression profiles
that will be simulated in each iteration during the process. Larger numbers result
in higher memory usage but shorter execution times. Set according to available
computational resources (1000 by default). Note that it cannot be greater than
the total number of simulated cells.

chunk.dims Specifies the dimensions that HDF5 chunk will have. If NULL, the default value
is a vector of two items: the number of genes considered by the ZINB-WaVE
model during the simulation and a single sample in order to reduce read times in
the following steps. A larger number of columns written in each chunk can lead
to longer read times in subsequent steps. Note that it cannot be greater than the
dimensions of the simulated matrix.

verbose Show informative messages during the execution (TRUE by default).

64 simSCProfiles

Details

Before this step, see ?estimateZinbwaveParams. As described in Torroja and Sanchez-Cabo,
2019, this function simulates a given number of transcriptional profiles for each cell type pro-
vided by randomly sampling from a negative binomial distribution with µ and θ estimated param-
eters and inserting dropouts by sampling from a binomial distribution with probability pi. All
parameters are estimated from single-cell real data using the estimateZinbwaveParams func-
tion. It uses the ZINB-WaVE model (Risso et al., 2018). For more details about the model, see
?estimateZinbwaveParams and Risso et al., 2018.

The file.backend argument allows to create a HDF5 file with simulated single-cell profiles to be
used as back-end to work with data stored on disk instead of loaded into RAM. If the file.backend
argument is used with block.processing = FALSE, all the single-cell profiles will be simulated
in one step and, therefore, loaded into in RAM memory. Then, data will be written in HDF5
file. To avoid to collapse RAM memory if too many single-cell profiles are simulated, single-
cell profiles can be simulated and written to HDF5 files in blocks of block.size size by setting
block.processing = TRUE.

Value

A DigitalDLSorter object with single.cell.simul slot containing a SingleCellExperiment
object with the simulated single-cell expression profiles.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978.

See Also

estimateZinbwaveParams

Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.3389/fgene.2019.00978

single.cell.real 65

rowData = data.frame(
Gene_ID = paste0("Gene", seq(15))

)
)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
DDLS <- estimateZinbwaveParams(

object = DDLS,
cell.type.column = "Cell_Type",
cell.ID.column = "Cell_ID",
gene.ID.column = "Gene_ID",
subset.cells = 4,
verbose = FALSE

)
DDLS <- simSCProfiles(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
n.cells = 2,
verbose = TRUE

)

single.cell.real Get and set single.cell.real slot in a DigitalDLSorter object

Description

Get and set single.cell.real slot in a DigitalDLSorter object

Usage

single.cell.real(object)

single.cell.real(object) <- value

Arguments

object DigitalDLSorter object.

value SingleCellExperiment object with real single-cell profiles.

66 test.deconv.metrics

single.cell.simul Get and set single.cell.simul slot in a DigitalDLSorter object

Description

Get and set single.cell.simul slot in a DigitalDLSorter object

Usage

single.cell.simul(object)

single.cell.simul(object) <- value

Arguments

object DigitalDLSorter object.

value SingleCellExperiment object with simulated single-cell profiles.

test.deconv.metrics Get and set test.deconv.metrics slot in a DigitalDLSorterDNN
object

Description

Get and set test.deconv.metrics slot in a DigitalDLSorterDNN object

Usage

test.deconv.metrics(object, metrics = "All")

test.deconv.metrics(object, metrics = "All") <- value

Arguments

object DigitalDLSorterDNN object.

metrics Metrics to show ('All' by default)

value List with evaluation metrics used to assess the performance of the model on each
sample of test data.

test.metrics 67

test.metrics Get and set test.metrics slot in a DigitalDLSorterDNN object

Description

Get and set test.metrics slot in a DigitalDLSorterDNN object

Usage

test.metrics(object)

test.metrics(object) <- value

Arguments

object DigitalDLSorterDNN object.

value List object with the resulting metrics after prediction on test data with the Deep
Neural Network model.

test.pred Get and set test.pred slot in a DigitalDLSorterDNN object

Description

Get and set test.pred slot in a DigitalDLSorterDNN object

Usage

test.pred(object)

test.pred(object) <- value

Arguments

object DigitalDLSorterDNN object.

value Matrix object with the prediction results on test data.

68 topGradientsCellType

topGradientsCellType Get top genes with largest/smallest gradients per cell type

Description

Retrieve feature names with the largest/smallest gradients per cell type. These genes can be used to
plot the calculated gradients as a heatmap (plotGradHeatmap function).

Usage

topGradientsCellType(object, method = "class", top.n.genes = 15)

Arguments

object DigitalDLSorter object with a DigitalDLSorterDNN object containing gradi-
ents in the interpret.gradients slot.

method Method gradients were calculated by. It can be either 'class' (gradients of
predicted classes w.r.t. inputs) or 'loss' (gradients of loss w.r.t. input features).

top.n.genes Top n genes (positive and negative) taken per cell type.

Value

List of gene names with the top positive and negative gradients per cell type.

See Also

interGradientsDL trainDDLSModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

trainDDLSModel 69

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
prop.design <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = prop.design,
num.bulk.samples = 50,
verbose = TRUE

)
DDLS <- simBulkProfiles(DDLS)
DDLS <- trainDDLSModel(

object = DDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients
DDLS <- interGradientsDL(DDLS)
listGradients <- topGradientsCellType(DDLS)
lapply(listGradients, head, n = 5)

trainDDLSModel Train Deep Neural Network model

Description

Train a Deep Neural Network model using the training data from DigitalDLSorter object. In
addition, the trained model is evaluated with test data and prediction results are computed to deter-
mine its performance (see ?calculateEvalMetrics). Training and evaluation can be performed
using simulated profiles stored in the DigitalDLSorter object or ’on the fly’ by simulating the
pseudo-bulk profiles at the same time as the training/evaluation is performed (see Details).

Usage

trainDDLSModel(
object,
type.data.train = "bulk",
type.data.test = "bulk",
batch.size = 64,

70 trainDDLSModel

num.epochs = 60,
num.hidden.layers = 2,
num.units = c(200, 200),
activation.fun = "relu",
dropout.rate = 0.25,
loss = "kullback_leibler_divergence",
metrics = c("accuracy", "mean_absolute_error", "categorical_accuracy"),
normalize = TRUE,
scaling = "standardize",
norm.batch.layers = TRUE,
custom.model = NULL,
shuffle = TRUE,
use.generator = FALSE,
on.the.fly = FALSE,
pseudobulk.function = "AddRawCount",
threads = 1,
view.metrics.plot = TRUE,
verbose = TRUE

)

Arguments

object DigitalDLSorter object with single.cell.real/single.cell.simul, prob.cell.matrix
and bulk.simul slots.

type.data.train

Type of profiles to be used for training. It can be 'both', 'single-cell' or
'bulk' ('bulk' by default).

type.data.test Type of profiles to be used for evaluation. It can be 'both', 'single-cell' or
'bulk' ('bulk' by default).

batch.size Number of samples per gradient update. If not specified, batch.size will de-
fault to 64.

num.epochs Number of epochs to train the model (10 by default).
num.hidden.layers

Number of hidden layers of the neural network (2 by default). This number must
be equal to the length of num.units argument.

num.units Vector indicating the number of neurons per hidden layer (c(200, 200) by de-
fault). The length of this vector must be equal to num.hidden.layers argument.

activation.fun Activation function to use ('relu' by default). See the keras documentation to
know available activation functions.

dropout.rate Float between 0 and 1 indicating the fraction of the input neurons to drop in
layer dropouts (0.25 by default). By default, digitalDLSorteR implements 1
dropout layer per hidden layer.

loss Character indicating loss function selected for model training ('kullback_leibler_divergence'
by default). See the keras documentation to know available loss functions.

metrics Vector of metrics used to assess model performance during training and evalua-
tion (c("accuracy", "mean_absolute_error", "categorical_accuracy")

https://tensorflow.rstudio.com/reference/keras/activation_relu.html
https://tensorflow.rstudio.com/reference/keras/loss-functions.html

trainDDLSModel 71

by default). See the keras documentation to know available performance met-
rics.

normalize Whether to normalize data using logCPM (TRUE by default). This parameter is
only considered when the method used to simulate mixed transcriptional pro-
files (simMixedProfiles function) was "AddRawCount". Otherwise, data were
already normalized.

scaling How to scale data before training. It may be: "standardize" (values are cen-
tered around the mean with a unit standard deviation) or "rescale" (values are
shifted and rescaled so that they end up ranging between 0 and 1).

norm.batch.layers

Whether to include batch normalization layers between each hidden dense layer
(TRUE by default).

custom.model It allows to use a custom neural network. It must be a keras.engine.sequential.Sequential
object in which the number of input neurons is equal to the number of consid-
ered features/genes, and the number of output neurons is equal to the number
of cell types considered (NULL by default). If provided, the arguments related to
the neural network architecture will be ignored.

shuffle Boolean indicating whether data will be shuffled (TRUE by default). Note that if
bulk.simul is not NULL, the data already has been shuffled and shuffle will be
ignored.

use.generator Boolean indicating whether to use generators during training and test. Gener-
ators are automatically used when on.the.fly = TRUE or HDF5 files are used,
but it can be activated by the user on demand (FALSE by default).

on.the.fly Boolean indicating whether data will be generated ’on the fly’ during training
(FALSE by default).

pseudobulk.function

Function used to build pseudo-bulk samples. It may be:

• "MeanCPM": single-cell profiles (raw counts) are transformed into CPMs
and cross-cell averages are calculated. Then, log2(CPM + 1) is calculated.

• "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and
are added up across cells. Then, log-CPMs are calculated.

• "AddRawCount": single-cell profiles (raw counts) are added up across cells.
Then, log-CPMs are calculated.

threads Number of threads used during simulation of pseudo-bulk samples if on.the.fly
= TRUE (1 by default).

view.metrics.plot

Boolean indicating whether to show plots of loss and metrics progression during
training (TRUE by default). keras for R allows to see the progression of the model
during training if you are working in RStudio.

verbose Boolean indicating whether to display model progression during training and
model architecture information (TRUE by default).

Details

Keras/Tensorflow environment

https://tensorflow.rstudio.com/reference/keras/metric_binary_accuracy.html

72 trainDDLSModel

All Deep Learning related steps in the digitalDLSorteR package are performed by using the
keras package, an API in R for keras in Python available on CRAN. We recommend using the
installTFpython function included in the package.

Simulation of bulk RNA-Seq profiles ’on the fly’

trainDDLSModel allows to avoid storing bulk RNA-Seq profiles by using on.the.fly argument.
This functionality aims to avoid exexcution times and memory usage of the simBulkProfiles
function, as the simulated pseudo-bulk profiles are built in each batch during training/evaluation.

Neural network architecture

By default, trainDDLSModel implements the architecture selected in Torroja and Sánchez-Cabo,
2019. However, as the default architecture may not produce good results depending on the dataset, it
is possible to change its parameters by using the corresponding argument: number of hidden layers,
number of neurons for each hidden layer, dropout rate, activation function and loss function. For
more customized models, it is possible to provide a pre-built model in the custom.model argument
(a keras.engine.sequential.Sequential object) where it is necessary that the number of input
neurons is equal to the number of considered features/genes and the number of output neurons is
equal to the number of considered cell types.

Value

A DigitalDLSorter object with trained.model slot containing a DigitalDLSorterDNN object.
For more information about the structure of this class, see ?DigitalDLSorterDNN.

References

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978

See Also

plotTrainingHistory deconvDDLSPretrained deconvDDLSObj

Examples

Not run:
set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

https://doi.org/10.3389/fgene.2019.00978

trained.model 73

Gene_ID = paste0("Gene", seq(15))
)

)
DDLS <- createDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
sc.log.FC = FALSE

)
probMatrixValid <- data.frame(

Cell_Type = paste0("CellType", seq(2)),
from = c(1, 30),
to = c(15, 70)

)
DDLS <- generateBulkCellMatrix(

object = DDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
prob.design = probMatrixValid,
num.bulk.samples = 30,
verbose = TRUE

)
training of DDLS model
tensorflow::tf$compat$v1$disable_eager_execution()
DDLS <- trainDDLSModel(

object = DDLS,
on.the.fly = TRUE,
batch.size = 12,
num.epochs = 5

)

End(Not run)

trained.model Get and set trained.model slot in a DigitalDLSorter object

Description

Get and set trained.model slot in a DigitalDLSorter object

Usage

trained.model(object)

trained.model(object) <- value

74 zinb.params

Arguments

object DigitalDLSorter object.

value DigitalDLSorterDNN object.

training.history Get and set training.history slot in a DigitalDLSorterDNN object

Description

Get and set training.history slot in a DigitalDLSorterDNN object

Usage

training.history(object)

training.history(object) <- value

Arguments

object DigitalDLSorterDNN object.

value keras_training_history object with the training history of the Deep Neural
Network model

zinb.params Get and set zinb.params slot in a DigitalDLSorter object

Description

Get and set zinb.params slot in a DigitalDLSorter object

Usage

zinb.params(object)

zinb.params(object) <- value

Arguments

object DigitalDLSorter object.

value ZinbParametersModel object with a valid ZinbModel object.

ZinbParametersModel-class 75

ZinbParametersModel-class

The Class ZinbParametersModel

Description

The ZinbParametersModel class is a wrapper class of the ZinbModel class from zinbwave package.

Details

This is a wrapper class of the ZinbModel class. It consists of only one slot (zinbwave.mode) that
contains the ZinbModel object.

Slots

zinbwave.model A valid ZinbModel object.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

zinbwave.model Get and set zinbwave.model slot in a ZinbParametersModel object

Description

Get and set zinbwave.model slot in a ZinbParametersModel object

Usage

zinbwave.model(object)

zinbwave.model(object) <- value

Arguments

object ZinbParametersModel object.

value ZinbModel object with the estimated parameters.

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5

Index

barErrorPlot, 3, 8, 11, 15, 32
barPlotCellTypes, 5
barPlotCellTypes,ANY-method

(barPlotCellTypes), 5
barPlotCellTypes,DigitalDLSorter-method

(barPlotCellTypes), 5
blandAltmanLehPlot, 4, 7, 11, 15, 32
bulk.simul, 10
bulk.simul,DigitalDLSorter-method

(bulk.simul), 10
bulk.simul<- (bulk.simul), 10
bulk.simul<-,DigitalDLSorter-method

(bulk.simul), 10

calculateEvalMetrics, 4, 8, 10, 15, 30, 32,
69

cell.names, 12
cell.names,ProbMatrixCellTypes-method

(cell.names), 12
cell.names<- (cell.names), 12
cell.names<-,ProbMatrixCellTypes-method

(cell.names), 12
cell.types, 13
cell.types,DigitalDLSorterDNN-method

(cell.types), 13
cell.types<- (cell.types), 13
cell.types<-,DigitalDLSorterDNN-method

(cell.types), 13
corrExpPredPlot, 4, 8, 11, 13, 32
createDDLSobject, 16, 25, 29

deconv.data, 20, 29
deconv.data,DigitalDLSorter-method

(deconv.data), 20
deconv.data<- (deconv.data), 20
deconv.data<-,DigitalDLSorter-method

(deconv.data), 20
deconv.results, 21
deconv.results,DigitalDLSorter-method

(deconv.results), 21

deconv.results<- (deconv.results), 21
deconv.results<-,DigitalDLSorter-method

(deconv.results), 21
deconvDDLSObj, 7, 21, 25, 26, 43, 46, 47, 51,

72
deconvDDLSPretrained, 7, 22, 24, 28, 29, 72
DigitalDLSorter, 6–8, 10, 11, 14, 16, 19–23,

30, 31, 34, 35, 37–40, 43, 46–48,
50–52, 54–57, 59–61, 63–66, 68–70,
72–74

DigitalDLSorter
(DigitalDLSorter-class), 28

digitalDLSorteR, 27
DigitalDLSorter-class, 28
digitalDLSorteR-package

(digitalDLSorteR), 27
DigitalDLSorterDNN, 11, 13, 14, 29, 31, 36,

37, 47, 48, 50, 51, 54, 55, 66–68, 72,
74

DigitalDLSorterDNN
(DigitalDLSorterDNN-class), 30

DigitalDLSorterDNN-class, 30
distErrorPlot, 4, 8, 11, 15, 31

estimateZinbwaveParams, 20, 34, 62, 64

facet_wrap, 14, 32
features, 36
features,DigitalDLSorterDNN-method

(features), 36
features<- (features), 36
features<-,DigitalDLSorterDNN-method

(features), 36

generateBulkCellMatrix, 20, 37, 41, 57–59,
61

getHDF5DumpCompressionLevel, 18, 60, 63
getProbMatrix, 40

installTFpython, 41

76

INDEX 77

interGradientsDL, 42, 49, 68

listToDDLS, 44, 45
listToDDLSDNN, 45, 45
loadDeconvData, 21, 46
loadDeconvData,DigitalDLSorter,character-method

(loadDeconvData), 46
loadDeconvData,DigitalDLSorter,SummarizedExperiment-method

(loadDeconvData), 46
loadTrainedModelFromH5, 46, 51, 54, 56

method, 47
method,ProbMatrixCellTypes-method

(method), 47
method<- (method), 47
method<-,ProbMatrixCellTypes-method

(method), 47
model, 48
model,DigitalDLSorterDNN-method

(model), 48
model<- (model), 48
model<-,DigitalDLSorterDNN-method

(model), 48

plotHeatmapGradsAgg, 48
plots, 50
plots,ProbMatrixCellTypes-method

(plots), 50
plots<- (plots), 50
plots<-,ProbMatrixCellTypes-method

(plots), 50
plotTrainingHistory, 43, 50, 72
preparingToSave, 30, 51, 55
prob.cell.types, 52
prob.cell.types,DigitalDLSorter-method

(prob.cell.types), 52
prob.cell.types<- (prob.cell.types), 52
prob.cell.types<-,DigitalDLSorter-method

(prob.cell.types), 52
prob.matrix, 52
prob.matrix,ProbMatrixCellTypes-method

(prob.matrix), 52
prob.matrix<- (prob.matrix), 52
prob.matrix<-,ProbMatrixCellTypes-method

(prob.matrix), 52
ProbMatrixCellTypes, 12, 13, 29, 37, 39, 47,

50, 52, 56, 57, 61
ProbMatrixCellTypes

(ProbMatrixCellTypes-class), 53

ProbMatrixCellTypes-class, 53
project, 54
project,DigitalDLSorter-method

(project), 54
project<- (project), 54
project<-,DigitalDLSorter-method

(project), 54

save, 55
saveRDS, 51, 54, 55
saveRDS,DigitalDLSorter-method

(saveRDS), 54
saveRDS,DigitalDLSorterDNN-method

(saveRDS), 54
saveRDS,saveRDS-method (saveRDS), 54
saveTrainedModelAsH5, 30, 47, 51, 54, 55, 55
set, 56
set,ProbMatrixCellTypes-method (set), 56
set.list, 57
set.list,ProbMatrixCellTypes-method

(set.list), 57
set.list<- (set.list), 57
set.list<-,ProbMatrixCellTypes-method

(set.list), 57
set<- (set), 56
set<-,ProbMatrixCellTypes-method (set),

56
showProbPlot, 39, 53, 57
simBulkProfiles, 37, 39, 59
simSCProfiles, 34, 35, 62
single.cell.real, 65
single.cell.real,DigitalDLSorter-method

(single.cell.real), 65
single.cell.real<- (single.cell.real),

65
single.cell.real<-,DigitalDLSorter-method

(single.cell.real), 65
single.cell.simul, 66
single.cell.simul,DigitalDLSorter-method

(single.cell.simul), 66
single.cell.simul<-

(single.cell.simul), 66
single.cell.simul<-,DigitalDLSorter-method

(single.cell.simul), 66

test.deconv.metrics, 66
test.deconv.metrics,DigitalDLSorterDNN-method

(test.deconv.metrics), 66

78 INDEX

test.deconv.metrics<-
(test.deconv.metrics), 66

test.deconv.metrics<-,DigitalDLSorterDNN-method
(test.deconv.metrics), 66

test.metrics, 67
test.metrics,DigitalDLSorterDNN-method

(test.metrics), 67
test.metrics<- (test.metrics), 67
test.metrics<-,DigitalDLSorterDNN-method

(test.metrics), 67
test.pred, 67
test.pred,DigitalDLSorterDNN-method

(test.pred), 67
test.pred<- (test.pred), 67
test.pred<-,DigitalDLSorterDNN-method

(test.pred), 67
topGradientsCellType, 68
trainDDLSModel, 23, 29, 37, 46, 47, 49, 51,

56, 59, 61, 68, 69, 72
trained.model, 21, 73
trained.model,DigitalDLSorter-method

(trained.model), 73
trained.model<- (trained.model), 73
trained.model<-,DigitalDLSorter-method

(trained.model), 73
training.history, 74
training.history,DigitalDLSorterDNN-method

(training.history), 74
training.history<- (training.history),

74
training.history<-,DigitalDLSorterDNN-method

(training.history), 74

zinb.params, 74
zinb.params,DigitalDLSorter-method

(zinb.params), 74
zinb.params<- (zinb.params), 74
zinb.params<-,DigitalDLSorter-method

(zinb.params), 74
zinbFit, 35
ZinbParametersModel, 35, 74, 75
ZinbParametersModel

(ZinbParametersModel-class), 75
ZinbParametersModel-class, 75
zinbwave.model, 75
zinbwave.model,ZinbParametersModel-method

(zinbwave.model), 75
zinbwave.model<- (zinbwave.model), 75

zinbwave.model<-,ZinbParametersModel-method
(zinbwave.model), 75

	barErrorPlot
	barPlotCellTypes
	blandAltmanLehPlot
	bulk.simul
	calculateEvalMetrics
	cell.names
	cell.types
	corrExpPredPlot
	createDDLSobject
	deconv.data
	deconv.results
	deconvDDLSObj
	deconvDDLSPretrained
	digitalDLSorteR
	DigitalDLSorter-class
	DigitalDLSorterDNN-class
	distErrorPlot
	estimateZinbwaveParams
	features
	generateBulkCellMatrix
	getProbMatrix
	installTFpython
	interGradientsDL
	listToDDLS
	listToDDLSDNN
	loadDeconvData
	loadTrainedModelFromH5
	method
	model
	plotHeatmapGradsAgg
	plots
	plotTrainingHistory
	preparingToSave
	prob.cell.types
	prob.matrix
	ProbMatrixCellTypes-class
	project
	saveRDS
	saveTrainedModelAsH5
	set
	set.list
	showProbPlot
	simBulkProfiles
	simSCProfiles
	single.cell.real
	single.cell.simul
	test.deconv.metrics
	test.metrics
	test.pred
	topGradientsCellType
	trainDDLSModel
	trained.model
	training.history
	zinb.params
	ZinbParametersModel-class
	zinbwave.model
	Index

