Package: SpatialDDLS 1.0.3
SpatialDDLS: Deconvolution of Spatial Transcriptomics Data Based on Neural Networks
Deconvolution of spatial transcriptomics data based on neural networks and single-cell RNA-seq data. SpatialDDLS implements a workflow to create neural network models able to make accurate estimates of cell composition of spots from spatial transcriptomics data using deep learning and the meaningful information provided by single-cell RNA-seq data. See Torroja and Sanchez-Cabo (2019) <doi:10.3389/fgene.2019.00978> and Mañanes et al. (2024) <doi:10.1093/bioinformatics/btae072> to get an overview of the method and see some examples of its performance.
Authors:
SpatialDDLS_1.0.3.tar.gz
SpatialDDLS_1.0.3.zip(r-4.5)SpatialDDLS_1.0.3.zip(r-4.4)SpatialDDLS_1.0.3.zip(r-4.3)
SpatialDDLS_1.0.3.tgz(r-4.4-any)SpatialDDLS_1.0.3.tgz(r-4.3-any)
SpatialDDLS_1.0.3.tar.gz(r-4.5-noble)SpatialDDLS_1.0.3.tar.gz(r-4.4-noble)
SpatialDDLS_1.0.3.tgz(r-4.4-emscripten)SpatialDDLS_1.0.3.tgz(r-4.3-emscripten)
SpatialDDLS.pdf |SpatialDDLS.html✨
SpatialDDLS/json (API)
NEWS
# Install 'SpatialDDLS' in R: |
install.packages('SpatialDDLS', repos = c('https://diegommcc.r-universe.dev', 'https://cloud.r-project.org')) |
Bug tracker:https://github.com/diegommcc/spatialddls/issues
deconvolutiondeep-learningneural-networkspatial-transcriptomics
Last updated 18 days agofrom:5fe0df3e6e. Checks:OK: 6 WARNING: 1. Indexed: yes.
Target | Result | Date |
---|---|---|
Doc / Vignettes | OK | Nov 18 2024 |
R-4.5-win | OK | Nov 18 2024 |
R-4.5-linux | WARNING | Nov 18 2024 |
R-4.4-win | OK | Nov 18 2024 |
R-4.4-mac | OK | Nov 18 2024 |
R-4.3-win | OK | Nov 18 2024 |
R-4.3-mac | OK | Nov 18 2024 |
Exports:barErrorPlotbarPlotCellTypesblandAltmanLehPlotcalculateEvalMetricscell.namescell.names<-cell.typescell.types<-corrExpPredPlotcreateSpatialDDLSobjectdeconv.spotsdeconv.spots<-DeconvDLModeldeconvSpatialDDLSdistErrorPlotestimateZinbwaveParamsfeaturesfeatures<-genMixedCellPropgetProbMatrixinstallTFpythoninterGradientsDLloadSTProfilesloadTrainedModelFromH5methodmethod<-mixed.profilesmixed.profiles<-modelmodel<-plotDistancesplotHeatmapGradsAggplotsplots<-plotSpatialClusteringplotSpatialGeneExprplotSpatialPropplotSpatialPropAllplotTrainingHistorypreparingToSaveprob.cell.typesprob.cell.types<-prob.matrixprob.matrix<-projectproject<-PropCellTypessaveRDSsaveTrainedModelAsH5setset.listset.list<-set<-showProbPlotsimMixedProfilessimSCProfilessingle.cell.realsingle.cell.real<-single.cell.simulsingle.cell.simul<-spatial.experimentsspatial.experiments<-SpatialDDLSspatialPropClusteringtest.deconv.metricstest.deconv.metrics<-test.metricstest.metrics<-test.predtest.pred<-topGradientsCellTypetrainDeconvModeltrained.modeltrained.model<-training.historytraining.history<-zinb.paramszinb.params<-ZinbParametersModelzinbwave.modelzinbwave.model<-
Dependencies:abindannotateAnnotationDbiaskpassassortheadbackportsbase64encbeachmatBHBiobaseBiocFileCacheBiocGenericsBiocNeighborsBiocParallelBiocSingularBiostringsbitbit64blobblusterbootbroomcachemcarcarDatacliclustercodetoolscolorspaceconfigcorrplotcowplotcpp11crayoncurlDBIdbplyrDelayedArrayDerivdoBydplyrdqrngedgeRfansifarverfastmapfilelockFNNformatRFormulafutile.loggerfutile.optionsgenefiltergenericsGenomeInfoDbGenomeInfoDbDataGenomicRangesggplot2ggpubrggrepelggsciggsignifgluegridExtragrrgtablegtoolsherehttrigraphIRangesirlbaisobandjsonliteKEGGRESTkeraslabelinglambda.rlatticelifecyclelimmalme4locfitmagickmagrittrMASSMatrixMatrixGenericsMatrixModelsmatrixStatsmemoisemetapodmgcvmicrobenchmarkmimeminqamodelrmunsellnlmenloptrnnetnumDerivopensslpbapplypbkrtestpillarpkgconfigplogrplyrpngpolynomprocessxpspurrrquantregR6rappdirsRColorBrewerRcppRcppEigenRcppTOMLreshape2reticulaterjsonrlangrprojrootRSQLiterstatixrstudioapirsvdS4ArraysS4VectorsScaledMatrixscalesscranscuttleSingleCellExperimentsitmosnowsoftImputeSparseArraySparseMSpatialExperimentstatmodstringistringrSummarizedExperimentsurvivalsystensorflowtfautographtfrunstibbletidyrtidyselectUCSC.utilsutf8vctrsviridisLitewhiskerwithrXMLxtableXVectoryamlzeallotzinbwavezlibbioc