
Package: SpatialDDLS (via r-universe)
August 24, 2024

Type Package

Title Deconvolution of Spatial Transcriptomics Data Based on Neural
Networks

Version 1.0.2

Maintainer Diego Mañanes <dmananesc@cnic.es>

Description Deconvolution of spatial transcriptomics data based on
neural networks and single-cell RNA-seq data. SpatialDDLS
implements a workflow to create neural network models able to
make accurate estimates of cell composition of spots from
spatial transcriptomics data using deep learning and the
meaningful information provided by single-cell RNA-seq data.
See Torroja and Sanchez-Cabo (2019)
<doi:10.3389/fgene.2019.00978> and Mañanes et al. (2024)
<doi:10.1093/bioinformatics/btae072> to get an overview of the
method and see some examples of its performance.

License GPL-3

URL https://diegommcc.github.io/SpatialDDLS/,

https://github.com/diegommcc/SpatialDDLS

BugReports https://github.com/diegommcc/SpatialDDLS/issues

Encoding UTF-8

Depends R (>= 4.0.0)

Imports rlang, grr, Matrix, methods, SpatialExperiment,
SingleCellExperiment, SummarizedExperiment, zinbwave, stats,
pbapply, S4Vectors, dplyr, reshape2, gtools, reticulate, keras,
tensorflow, FNN, ggplot2, ggpubr, scran, scuttle

Suggests knitr, rmarkdown, BiocParallel, rhdf5, DelayedArray,
DelayedMatrixStats, HDF5Array, testthat, ComplexHeatmap, grid,
bluster, lsa, irlba

SystemRequirements Python (>= 2.7.0), TensorFlow
(https://www.tensorflow.org/)

RoxygenNote 7.2.3

1

https://doi.org/10.3389/fgene.2019.00978
https://doi.org/10.1093/bioinformatics/btae072
https://diegommcc.github.io/SpatialDDLS/
https://github.com/diegommcc/SpatialDDLS
https://github.com/diegommcc/SpatialDDLS/issues

2 Contents

Roxygen list(markdown = TRUE)

Collate 'AllClasses.R' 'AllGenerics.R' 'SpatialDDLS.R' 'dnnModel.R'
'evalMetrics.R' 'interGradientsDL.R' 'loadData.R'
'plotSpatialCoor.R' 'simMixedSpots.R' 'simSingleCell.R'
'spatialClustering.R' 'utils.R'

VignetteBuilder knitr

Repository https://diegommcc.r-universe.dev

RemoteUrl https://github.com/diegommcc/spatialddls

RemoteRef HEAD

RemoteSha f36ee747ad36bf8f885b490d74823406c607bdde

Contents
barErrorPlot . 3
barPlotCellTypes . 5
blandAltmanLehPlot . 6
calculateEvalMetrics . 9
cell.names . 10
cell.types . 10
corrExpPredPlot . 11
createSpatialDDLSobject . 13
deconv.spots . 18
DeconvDLModel-class . 18
deconvSpatialDDLS . 19
distErrorPlot . 23
estimateZinbwaveParams . 26
features . 29
genMixedCellProp . 29
getProbMatrix . 32
installTFpython . 32
interGradientsDL . 33
loadSTProfiles . 35
loadTrainedModelFromH5 . 38
method . 38
mixed.profiles . 39
model . 39
plotDistances . 40
plotHeatmapGradsAgg . 41
plots . 42
plotSpatialClustering . 43
plotSpatialGeneExpr . 44
plotSpatialProp . 45
plotSpatialPropAll . 46
plotTrainingHistory . 47
preparingToSave . 48
prob.cell.types . 48

barErrorPlot 3

prob.matrix . 49
project . 49
PropCellTypes-class . 50
saveRDS . 50
saveTrainedModelAsH5 . 52
set . 52
set.list . 53
showProbPlot . 53
simMixedProfiles . 55
simSCProfiles . 58
single.cell.real . 61
single.cell.simul . 61
spatial.experiments . 62
SpatialDDLS-class . 62
SpatialDDLS-Rpackage . 63
spatialPropClustering . 64
test.deconv.metrics . 66
test.metrics . 66
test.pred . 67
topGradientsCellType . 67
trainDeconvModel . 69
trained.model . 72
training.history . 73
zinb.params . 73
ZinbParametersModel-class . 74
zinbwave.model . 74

Index 75

barErrorPlot Generate bar error plots

Description

Generate bar error plots by cell type (CellType) or by number of different cell types (nCellTypes)
on test mixed transcriptional profiles.

Usage

barErrorPlot(
object,
error = "MSE",
by = "CellType",
dispersion = "se",
filter.sc = TRUE,
title = NULL,
angle = NULL,
theme = NULL

)

4 barErrorPlot

Arguments

object SpatialDDLS object with trained.model slot containing metrics in the test.deconv.metrics
slot of a DeconvDLModel object.

error 'MAE' or 'MSE'.

by Variable used to show errors. Available options are: 'nCellTypes', 'CellType'.

dispersion Standard error ('se') or standard deviation ('sd'). The former by default.

filter.sc Boolean indicating whether single-cell profiles are filtered out and only correla-
tion of results associated with mixed transcriptional profiles are shown (TRUE by
default).

title Title of the plot.

angle Angle of ticks.

theme ggplot2 theme.

Value

A ggplot object.

See Also

calculateEvalMetrics corrExpPredPlot distErrorPlot blandAltmanLehPlot

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",

barPlotCellTypes 5

cell.type.column = "Cell_Type",
num.sim.spots = 100,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
training of DDLS model
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 10,
num.epochs = 5

)
evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
bar error plots
barErrorPlot(

object = SDDLS,
error = "MSE",
by = "CellType"

)
barErrorPlot(

object = SDDLS,
error = "MAE",
by = "nCellTypes"

)

barPlotCellTypes Bar plot of deconvoluted cell type proportions

Description

Bar plot of deconvoluted cell type proportions.

Usage

barPlotCellTypes(
data,
colors = NULL,
set = NULL,
prediction = "Regularized",
color.line = NA,
x.label = "Spots",
rm.x.text = FALSE,
title = "Results of deconvolution",
legend.title = "Cell types",
angle = 90,

6 blandAltmanLehPlot

theme = NULL,
index.st = NULL

)

Arguments

data SpatialDDLS object with the deconv.spots slot containing predicted cell type
proportions.

colors Vector of colors to be used.

set Type of simplification performed during deconvolution. It can be simpli.set
or simpli.maj (NULL by default).

prediction Set of predicted cell proportions to be plotted. It can be "Regularized", "Intrinsic"
or "Extrinsic".

color.line Color of the border bars.

x.label Label of x-axis.

rm.x.text Logical value indicating whether to remove x-axis ticks (name of samples).

title Title of the plot.

legend.title Title of the legend plot.

angle Angle of text ticks.

theme ggplot2 theme.

index.st Name or index of the element wanted to be shown in the deconv.spots slot.

Value

A ggplot object with the provided cell proportions represented as a bar plot.

See Also

deconvSpatialDDLS

blandAltmanLehPlot Generate Bland-Altman agreement plots between predicted and ex-
pected cell type proportions of test data

Description

Generate Bland-Altman agreement plots between predicted and expected cell type proportions from
test data. The Bland-Altman agreement plots can be shown all mixed or split by either cell type
(CellType) or the number of cell types present in spots (nCellTypes). See the facet.by argument
and examples for more information.

blandAltmanLehPlot 7

Usage

blandAltmanLehPlot(
object,
colors,
color.by = "CellType",
facet.by = NULL,
log.2 = FALSE,
filter.sc = TRUE,
density = TRUE,
color.density = "darkblue",
size.point = 0.05,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object SpatialDDLS object with trained.model slot containing metrics in the test.deconv.metrics
slot of a DeconvDLModel object.

colors Vector of colors to be used.

color.by Variable used to color data. Options are nCellTypes and CellType.

facet.by Variable used to show the data in different panels. If NULL, the plot is not split
into different panels. Options are nCellTypes (by number of different cell
types) and CellType (by cell type).

log.2 Whether to show the Bland-Altman agreement plot in log2 space (FALSE by
default).

filter.sc Boolean indicating whether single-cell profiles are filtered out and only correla-
tions of results associated with mixed spot profiles are shown (TRUE by default).

density Boolean indicating whether density lines should be shown (TRUE by default).

color.density Color of density lines if the density argument is TRUE.

size.point Size of the points (0.1 by default).

alpha.point Alpha of the points (0.1 by default).

ncol Number of columns if facet.by is used.

nrow Number of rows if facet.by is used.

title Title of the plot.

theme ggplot2 theme.

... Additional argument for the facet_wrap function of ggplot2 if facet.by is not
NULL.

8 blandAltmanLehPlot

Value

A ggplot object.

See Also

calculateEvalMetrics corrExpPredPlot distErrorPlot barErrorPlot

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
training of DDLS model
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
Bland-Altman plot by cell type
blandAltmanLehPlot(

calculateEvalMetrics 9

object = SDDLS,
facet.by = "CellType",
color.by = "CellType"

)
Bland-Altman plot of all samples mixed
blandAltmanLehPlot(

object = SDDLS,
facet.by = NULL,
color.by = "CellType",
alpha.point = 0.3,
log2 = TRUE

)

calculateEvalMetrics Calculate evaluation metrics on test mixed transcriptional profiles

Description

Calculate evaluation metrics on test mixed transcriptional profiles. By default, absolute error (AbsErr),
proportional absolute error (ppAbsErr), squared error (SqrErr), and proportional squared error
(ppSqrErr) are calculated for each test mixed profile. In addition, each of these metrics is aggre-
gated according to three criteria: cell type (CellType), probability bins in ranges of 0.1 (pBin), and
number of different cell types present in the spot (nCellTypes).

Usage

calculateEvalMetrics(object)

Arguments

object SpatialDDLS object with a trained model in trained.model slot and the actual
cell proportions of test mixed profiles in prob.cell.types slot.

Value

A SpatialDDLS object with is a DeconvDLModel object. The calculated metrics are stored in the
test.deconv.metrics slot of the DeconvDLModel object.

See Also

distErrorPlot corrExpPredPlot blandAltmanLehPlot barErrorPlot

10 cell.types

cell.names Get and set cell.names slot in a PropCellTypes object

Description

Get and set cell.names slot in a PropCellTypes object

Usage

cell.names(object)

cell.names(object) <- value

Arguments

object PropCellTypes object.

value Matrix containing names of the mixed transcriptional profiles to be simulated as
rows and cells to be used to simulate them as columns.

cell.types Get and set cell.types slot in a DeconvDLModel object

Description

Get and set cell.types slot in a DeconvDLModel object

Usage

cell.types(object)

cell.types(object) <- value

Arguments

object DeconvDLModel object.

value Vector with cell types considered by the deep neural network model.

corrExpPredPlot 11

corrExpPredPlot Generate correlation plots between predicted and expected cell type
proportions of test data

Description

Generate correlation plots between predicted and expected cell type proportions of test data. Corre-
lation plots can be shown all mixed or either split by cell type (CellType) or the number of different
cell types present in the spots (nCellTypes).

Usage

corrExpPredPlot(
object,
colors,
facet.by = NULL,
color.by = "CellType",
corr = "both",
filter.sc = TRUE,
pos.x.label = 0.01,
pos.y.label = 0.95,
sep.labels = 0.15,
size.point = 0.1,
alpha.point = 1,
ncol = NULL,
nrow = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object SpatialDDLS object with trained.model slot containing metrics in the test.deconv.metrics
slot of a DeconvDLModel object.

colors Vector of colors to be used.

facet.by Show data in different panels. Options are nCellTypes (number of different cell
types) and CellType (cell type) (NULL by default).

color.by Variable used to color data. Options are nCellTypes and CellType.

corr Correlation value shown as an annotation on the plot. Available metrics are
Pearson’s correlation coefficient ('pearson') and concordance correlation co-
efficient ('ccc'). It can be 'pearson', 'ccc' or 'both' (by default).

filter.sc Boolean indicating whether single-cell profiles are filtered out and only mixed
transcriptional profile errors are shown (TRUE by default).

pos.x.label X-axis position of correlation annotations (0.95 by default).

12 corrExpPredPlot

pos.y.label Y-axis position of correlation annotations (0.1 by default).

sep.labels Space separating annotations if corr is equal to 'both' (0.15 by default).

size.point Size of points (0.1 by default).

alpha.point Alpha of points (0.1 by default).

ncol Number of columns if facet.by is other than NULL.

nrow Number of rows if facet.by is different from NULL.

title Title of the plot.

theme ggplot2 theme.

... Additional arguments for the facet_wrap function of ggplot2 if facet.by is not
NULL.

Value

A ggplot object.

See Also

calculateEvalMetrics distErrorPlot blandAltmanLehPlot barErrorPlot

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(
assays = list(

counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,

createSpatialDDLSobject 13

train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
training of DDLS model
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
correlations by cell type
corrExpPredPlot(

object = SDDLS,
facet.by = "CellType",
color.by = "CellType",
corr = "both"

)
correlations of all samples mixed
corrExpPredPlot(

object = SDDLS,
facet.by = NULL,
color.by = "CellType",
corr = "ccc",
pos.x.label = 0.2,
alpha.point = 0.3

)

createSpatialDDLSobject

Create a SpatialDDLS object

Description

Create a SpatialDDLS object by providing single-cell RNA-seq data. Additionally, spatial tran-
scriptomics data contained in SpatialDDLS objects can also be provided. It is recommended to
provide both types of data to only use genes shared between both experiments.

Usage

createSpatialDDLSobject(
sc.data,
sc.cell.ID.column,
sc.cell.type.column,
sc.gene.ID.column,

14 createSpatialDDLSobject

st.data,
st.spot.ID.column,
st.gene.ID.column,
filter.mt.genes = "^mt-",
sc.filt.genes.cluster = TRUE,
sc.min.mean.counts = 1,
sc.n.genes.per.cluster = 300,
top.n.genes = 2000,
sc.log.FC = TRUE,
sc.min.counts = 1,
sc.min.cells = 1,
st.min.counts = 1,
st.min.spots = 1,
st.n.slides = 3,
shared.genes = TRUE,
sc.name.dataset.h5 = NULL,
sc.file.backend = NULL,
sc.name.dataset.backend = NULL,
sc.compression.level = NULL,
sc.chunk.dims = NULL,
sc.block.processing = FALSE,
verbose = TRUE,
project = "SpatialDDLS-Proj"

)

Arguments

sc.data Single-cell RNA-seq profiles to be used as reference. If data are provided from
files, single.cell.real must be a vector of three elements: single-cell counts,
cells metadata and genes metadata. On the other hand, If data are provided
from a SingleCellExperiment object, single-cell counts must be present in
the assay slot, cells metadata in the colData slot, and genes metadata in the
rowData slot.

sc.cell.ID.column

Name or number of the column in cells metadata corresponding to cell names in
expression matrix (single-cell RNA-seq data).

sc.cell.type.column

Name or column number corresponding to cell types in cells metadata.

sc.gene.ID.column

Name or number of the column in genes metadata corresponding to the names
used for features/genes (single-cell RNA-seq data).

st.data Spatial transcriptomics datasets to be deconvoluted. It can be a single SpatialExperiment
object or a list of them.

st.spot.ID.column

Name or number of the column in spots metadata corresponding to spot names
in expression matrix (spatial transcriptomics data).

createSpatialDDLSobject 15

st.gene.ID.column

Name or number of the column in the genes metadata corresponding to the
names used for features/genes (spatial transcriptomics data).

filter.mt.genes

Regular expression matching mitochondrial genes to be ruled out (^mt- by de-
fault). If NULL, no filtering is performed.

sc.filt.genes.cluster

Whether to filter single-cell RNA-seq genes according to a minimum thresh-
old of non-zero average counts per cell type (sc.min.mean.counts). TRUE by
default.

sc.min.mean.counts

Minimum non-zero average counts per cluster to filter genes. 1 by default.
sc.n.genes.per.cluster

Top n genes with the highest logFC per cluster (300 by default). See Details
section for more details.

top.n.genes Maximum number of genes used for downstream steps (2000 by default). In
case the number of genes after filtering is greater than top.n.genes, these genes
will be set according to variability across the whole single-cell dataset.

sc.log.FC Whether to filter genes with a logFC less than 0.5 when sc.filt.genes.cluster
= TRUE (TRUE by default).

sc.min.counts Minimum gene counts to filter (1 by default; single-cell RNA-seq data).

sc.min.cells Minimum of cells with more than min.counts (1 by default; single-cell RNA-
seq data).

st.min.counts Minimum gene counts to filter (1 by default; spatial transcriptomics data).

st.min.spots Minimum of cells with more than min.counts (1 by default; spatial transcrip-
tomics data).

st.n.slides Minimum number of slides (SpatialExperiment objects) in which a gene has
to be expressed in order to keep it. This parameter is applicable only when
multiple SpatialExperiment objects are provided. Genes not present in at
least st.n.slides will be discarded. If no filtering is desired, set st.n.slides
= 1.

shared.genes If set to TRUE, only genes present in both the single-cell and spatial transcrip-
tomics data will be retained for further processing (TRUE by default).

sc.name.dataset.h5

Name of the data set if HDF5 file is provided for single-cell RNA-seq data.
sc.file.backend

Valid file path where to store the loaded for single-cell RNA-seq data as HDF5
file. If provided, data are stored in a HDF5 file as back-end using the De-
layedArray and HDF5Array packages instead of being loaded into RAM. This
is suitable for situations where you have large amounts of data that cannot be
stored in memory. Note that operations on these data will be performed by
blocks (i.e subsets of determined size), which may result in longer execution
times. NULL by default.

sc.name.dataset.backend

Name of the HDF5 file dataset to be used. Note that it cannot exist. If NULL (by
default), a random dataset name will be generated.

16 createSpatialDDLSobject

sc.compression.level

The compression level used if sc.file.backend is provided. It is an integer
value between 0 (no compression) and 9 (highest and slowest compression).
See ?getHDF5DumpCompressionLevel from the HDF5Array package for more
information.

sc.chunk.dims Specifies dimensions that HDF5 chunk will have. If NULL, the default value is
a vector of two items: the number of genes considered by SpatialDDLS object
during the simulation, and only one sample in order to increase read times in the
following steps. A larger number of columns written in each chunk may lead to
longer read times.

sc.block.processing

Boolean indicating whether single-cell RNA-seq data should be treated as blocks
(only if data are provided as HDF5 file). FALSE by default. Note that using this
functionality is suitable for cases where it is not possible to load data into RAM
and therefore execution times will be longer.

verbose Show informative messages during the execution (TRUE by default).

project Name of the project for SpatialDDLS object.

Details

Filtering genes

In order to reduce the number of dimensions used for subsequent steps, createSpatialDDLSobject
implements different strategies aimed at removing useless genes for deconvolution:

• Filtering at the cell level: genes less expressed than a determined cutoff in N cells are removed.
See sc.min.cells/st.min.cells and sc.min.counts/st.min.cells parameters.

• Filtering at the cluster level (only for scRNA-seq data): if sc.filt.genes.cluster == TRUE,
createSpatialDDLSobject sets a cutoff of non-zero average counts per cluster (sc.min.mean.counts
parameter) and take only the sc.n.genes.per.cluster genes with the highest logFC per
cluster. LogFCs are calculated using normalized logCPM of each cluster with respect to
the average in the whole dataset). Finally, if the number of remaining genes is greater than
top.n.genes, genes are ranked based on variance and the top.n.genes most variable genes
are used for downstream analyses.

Single-cell RNA-seq data

Single-cell RNA-seq data can be provided from files (formats allowed: tsv, tsv.gz, mtx (sparse ma-
trix) and hdf5) or a SingleCellExperiment object. Data will be stored in the single.cell.real
slot, and must consist of three pieces of information:

• Single-cell counts: genes as rows and cells as columns.

• Cells metadata: annotations (columns) for each cell (rows).

• Genes metadata: annotations (columns) for each gene (rows).

If data are provided from files, single.cell.real argument must be a vector of three elements
ordered so that the first file corresponds to the count matrix, the second to the cells metadata, and
the last to the genes metadata. On the other hand, if data are provided as a SingleCellExperiment
object, it must contain single-cell counts in assay, cells metadata in colData, and genes metadata in

createSpatialDDLSobject 17

rowData. Data must be provided without any transformation (e.g. log-transformation), raw counts
are preferred.

Spatial transcriptomics data

It must be a SpatialExperiment object (or a list of them if more than one slide is going to be
deconvoluted) containing the same information as the single-cell RNA-seq data: the count matrix,
spots metadata, and genes metadata. Please, make sure the gene identifiers used the spatial and
single-cell transcriptomics data are consistent.

Value

A SpatialDDLS object with the single-cell RNA-seq data provided loaded into the single.cell.real
slot as a SingleCellExperiment object. If spatial transcriptomics data are provided, they will be
loaded into the spatial.experiments slot.

See Also

estimateZinbwaveParams genMixedCellProp

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)
counts <- matrix(

rpois(30, lambda = 5), ncol = 6,
dimnames = list(paste0("Gene", 1:5), paste0("Spot", 1:6))

)
coordinates <- matrix(

c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3), ncol = 2
)
ste <- SpatialExperiment::SpatialExperiment(

assays = list(counts = as.matrix(counts)),
rowData = data.frame(Gene_ID = paste0("Gene", 1:5)),
colData = data.frame(Cell_ID = paste0("Spot", 1:6)),
spatialCoords = coordinates

)

18 DeconvDLModel-class

SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
st.data = ste,
st.spot.ID.column = "Cell_ID",
st.gene.ID.column = "Gene_ID",
project = "Simul_example",
sc.filt.genes.cluster = FALSE

)

deconv.spots Get and set deconv.spots slot in a SpatialDDLS object

Description

Get and set deconv.spots slot in a SpatialDDLS object

Usage

deconv.spots(object, index.st = NULL)

deconv.spots(object, index.st = NULL) <- value

Arguments

object SpatialDDLS object.

index.st Name or index of predicted cell proportions (same as for the spatial.experiments
slot). If NULL (by default), all results are returned.

value List of predicted cell type proportions for the experiments stored in the spatial.experiments
slot.

DeconvDLModel-class The DeconvDLModel Class

Description

The DeconvDLModel object stores all the information related to deep neural network models. It
consists of the trained model, the training history, and the predictions on test data. After running
calculateEvalMetrics, it is possible to find the performance evaluation of the model on test data
(see ?calculateEvalMetrics for details).

deconvSpatialDDLS 19

Details

The steps related to Deep Learning are carried out using the keras and tensorflow packages,
which use the R6 classes system. If you want to save the DeconvDLModel object as an RDS file,
SpatialDDLS provides a saveRDS generic function that transforms the R6 object containing the
trained model into a native valid R object. Specifically, the model is converted into a list with
the architecture of the network and the weights learned during training, which is the minimum
information needed to use the model as a predictor. If you want to keep the optimizer state, see
?saveTrainedModelAsH5. If you want to store either the DeconvDLModel or the SpatialDDLS
objects on disk as RDA files, see ?preparingToSave.

Slots

model Trained deep neural network. This slot can contain an R6 keras.engine.sequential.Sequential
object or a list with two elements: the architecture of the model and the resulting weights after
training.

training.history List with the evolution of the selected metrics during training.

test.metrics Performance of the model on test data.

test.pred Predicted cell type proportions on test data.

cell.types Vector with cell types considered by the model.

features Vector with features (genes) considered by the model. These features will be used for
subsequent predictions.

test.deconv.metrics Performance of the model on test data by cell type. This slot is generated
by the calculateEvalMetrics function (see ?calculateEvalMetrics for more details).

interpret.gradients Gradients for interpretation. SpatialDDLS provides some functions to
better understand prediction made by the model (see ?interGradientsDL for more details).
This slot is a list of either one or two elements: gradients of either the loss function or the
predicted class with respect to the input variables using pure (only one cell type) mixed tran-
scriptional profiles. These gradients can be interpreted as to what extent the model is using
these variables to predict each cell type proportions.

deconvSpatialDDLS Deconvolute spatial transcriptomics data using trained model

Description

Deconvolute spatial transcriptomics data using the trained model in the SpatialDDLS object. The
trained model is used to predict cell proportions of two mirrored transcriptional profiles:

• ’Intrinsic’ profiles: transcriptional profiles of each spot in the ST dataset.

• ’Extrinsic’ profiles: profiles simulated from the surrounding spots of each spot.

After prediction, cell proportions from the intrinsic profiles (intrinsic cell proportions) are regu-
larized based on the similarity between intrinsic and extrinsic profiles in order to maintain spatial
consistency. This approach leverages both transcriptional and spatial information. For more details,
see Mañanes et al., 2023 and the Details section.

20 deconvSpatialDDLS

Usage

deconvSpatialDDLS(
object,
index.st,
normalize = TRUE,
scaling = "standardize",
k.spots = 4,
pca.space = TRUE,
fast.pca = TRUE,
pcs.num = 50,
pca.var = 0.8,
metric = "euclidean",
alpha.cutoff = "mean",
alpha.quantile = 0.5,
simplify.set = NULL,
simplify.majority = NULL,
use.generator = FALSE,
batch.size = 64,
verbose = TRUE

)

Arguments

object SpatialDDLS object with trained.model and spatial.experiments slots.

index.st Name or index of the dataset/slide stored in the SpatialDDLS object (spatial.experiments
slot) to be deconvolute. If missing, all datasets will be deconvoluted.

normalize Normalize data (logCPM) before deconvolution (TRUE by default).

scaling How to scale data before training. Options include "standardize" (values are
centered around the mean with a unit standard deviation) or "rescale" (val-
ues are shifted and rescaled so that they end up ranging between 0 and 1). If
normalize = FALSE, data are not scaled.

k.spots Number of nearest spots considered for each spot during regularization and sim-
ulation of extrinsic transcriptional profiles. The greater, the smoother the regu-
larization will be (4 by default).

pca.space Whether to use PCA space to calculate distances between intrinsic and extrinsic
transcriptional profiles (TRUE by default).

fast.pca Whether using the irlba implementation. If TRUE, the number of PCs used is
defined by the parameter. If FALSE, the PCA implementation from the stats R
package is used instead (TRUE by default).

pcs.num Number of PCs used to calculate distances if fast.pca == TRUE (50 by default).

pca.var Threshold of explained variance (between 0.2 and 1) used to choose the number
of PCs used if pca.space == TRUE and fast.pca == FALSE (0.8 by default).

metric Metric used to measure distance/similarity between intrinsic and extrinsic tran-
scriptional profiles. It may be 'euclidean', 'cosine' or 'pearson' ('euclidean'
by default).

deconvSpatialDDLS 21

alpha.cutoff Minimum distance for regularization. It may be 'mean' (spots with transcrip-
tional distances shorter than the mean distance of the dataset will be modified) or
'quantile' (spots with transcriptional distances shorter than the alpha.quantile
quantile are used). 'mean' by default.

alpha.quantile Quantile used if alpha.cutoff == 'quantile'. 0.5 by default.

simplify.set List specifying which cell types should be compressed into a new label with the
name of the list item. See examples for details. If provided, results are stored in
a list with 'raw' and 'simpli.set' elements.

simplify.majority

List specifying which cell types should be compressed into the cell type with the
highest proportion in each spot. Unlike simplify.set, no new labels are cre-
ated. If provided, results are stored in a list with 'raw' and 'simpli.majority'
elements.

use.generator Boolean indicating whether to use generators for prediction (FALSE by default).

batch.size Number of samples per batch. Only when use.generator = TRUE.

verbose Show informative messages during the execution.

Details

The deconvolution process involves two main steps: predicting cell proportions based on transcrip-
tome using the trained neural network model, and regularization of cell proportions based on the
spatial location of each spot. In the regularization step, a mirrored version of each spot is simulated
based on its N-nearest spots. We refer to these profiles as ’extrinsic’ profiles, whereas the transcrip-
tional profiles of each spot are called ’intrinsic’ profiles. Extrinsic profiles are used to regularize
predictions based on intrinsic profiles. The rationale is that spots surrounded by transcriptionally
similar spots should have similar cell compositions, and therefore predicted proportions can be
smoothed to preserve their spatial consistency. On the other hand, spots surrounded by dissimilar
spots cannot be predicted by their neighbors, and thus they can only be predicted by their own
transcriptional profiles likely due to presenting very specific cell compositions.

Regarding the working os SpatialDDLS: first, extrinsic profiles are simulated based on the N-
nearest spots for each spot by summing their transcriptomes. Distances between extrinsic and in-
trinsic profiles of each spot are calculated so that similar/dissimilar spots are identified. These two
sets of transcriptional profiles are used as input for the trained neural network model, and according
to the calculated distances, a weighted mean between the predicted proportions for each spot is cal-
culated. Spots with distances between intrinsic and extrinsic profiles greater than alpha.cutoff are
not regularized, whereas spots with distances less than alpha.cutoff contribute to the weighted
mean. Weights are calculated by rescaling distances less than alpha.cutoff between 0 and 0.5, so
that the maximum extent to which a extrinsic profile can modified the predictions based on intrinsic
profiles is 0.5 (a regular mean). For more details, see Mañanes et al., 2023.

This function requires a SpatialDDLS object with a trained deep neural network model (trained.model
slot, and the spatial transcriptomics datasets to be deconvoluted in the spatial.experiments slot.
See ?createSpatialDDLSobject or ?loadSTProfiles for more details.

Value

SpatialDDLS object with a deconv.spots slot. The output is a list containing ’Regularized’, ’In-
trinsic’ and ’Extrinsic’ deconvoluted cell proportions, ’Distances’ between intrinsic and extrinsic

22 deconvSpatialDDLS

transcriptional profiles, and ’Weight.factors’ with the final weights used to regularize intrinsic cell
proportions. If simplify.set and/or simplify.majority are provided, the deconv.spots slot
will contain a list with raw and simplified results.

References

Mañanes, D., Rivero-García, I., Jimenez-Carretero, D., Torres, M., Sancho, D., Torroja, C., Sánchez-
Cabo, F. (2023). SpatialDDLS: An R package to deconvolute spatial transcriptomics data using
neural networks. biorxiv. doi: doi:10.1101/2023.08.31.555677.

See Also

trainDeconvModel SpatialDDLS

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(
rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(x = paste0("CellType", seq(6)), size = 20,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
training of SDDLS model
SDDLS <- trainDeconvModel(

object = SDDLS,

https://doi.org/10.1101/2023.08.31.555677

distErrorPlot 23

batch.size = 15,
num.epochs = 5

)
simulating spatial data
ngenes <- sample(3:40, size = 1)
ncells <- sample(10:40, size = 1)
counts <- matrix(

rpois(ngenes * ncells, lambda = 5), ncol = ncells,
dimnames = list(paste0("Gene", seq(ngenes)), paste0("Spot", seq(ncells)))

)
coordinates <- matrix(

rep(c(1, 2), ncells), ncol = 2
)
st <- SpatialExperiment::SpatialExperiment(

assays = list(counts = as.matrix(counts)),
rowData = data.frame(Gene_ID = paste0("Gene", seq(ngenes))),
colData = data.frame(Cell_ID = paste0("Spot", seq(ncells))),
spatialCoords = coordinates

)
SDDLS <- loadSTProfiles(

object = SDDLS,
st.data = st,
st.spot.ID.column = "Cell_ID",
st.gene.ID.column = "Gene_ID"

)
simplify arguments
simplify <- list(CellGroup1 = c("CellType1", "CellType2", "CellType4"),

CellGroup2 = c("CellType3", "CellType5"))
SDDLS <- deconvSpatialDDLS(

object = SDDLS,
index.st = 1,
simplify.set = simplify,
simplify.majority = simplify

)

distErrorPlot Generate box or violin plots showing error distribution

Description

Generate box or violin plots to show how errors are distributed. Errors can be shown all mixed or
either split by cell type (CellType) or number of cell types present in the spots (nCellTypes). See
the facet.by argument and examples for more details.

Usage

distErrorPlot(
object,
error,

24 distErrorPlot

colors,
x.by = "pBin",
facet.by = NULL,
color.by = "nCellTypes",
filter.sc = TRUE,
error.label = FALSE,
pos.x.label = 4.6,
pos.y.label = NULL,
size.point = 0.1,
alpha.point = 1,
type = "violinplot",
ylimit = NULL,
nrow = NULL,
ncol = NULL,
title = NULL,
theme = NULL,
...

)

Arguments

object SpatialDDLS object with trained.model slot containing metrics in the test.deconv.metrics
slot of a DeconvDLModel object.

error Error to be represented. Available metric errors are: absolute error ('AbsErr'),
proportional absolute error ('ppAbsErr'), squared error ('SqrErr'), and pro-
portional squared error ('ppSqrErr').

colors Vector of colors to be used.

x.by Variable used for the X-axis. When facet.by is not NULL, the best choice is
pBin (probability bins). Options: nCellTypes (number of different cell types),
CellType (cell type), and pBin.

facet.by Show data in different panels. Options are nCellTypes (number of different cell
types) and CellType (cell type) (NULL by default).

color.by Variable used to color data. Options are nCellTypes and CellType.

filter.sc Boolean indicating whether single-cell profiles are filtered out and only mixed
transcriptional profile errors are shown (TRUE by default).

error.label Boolean indicating whether to show the average error as a plot annotation (FALSE
by default).

pos.x.label X-axis position of error annotations.

pos.y.label Y-axis position of error annotations.

size.point Size of points (0.1 by default).

alpha.point Alpha of points (0.1 by default).

type Type of plot: 'boxplot' or 'violinplot' (the latter by default).

ylimit Upper limit in Y-axis if it is required (NULL by default).

nrow Number of rows if facet.by is not NULL.

distErrorPlot 25

ncol Number of columns if facet.by is not NULL.

title Title of the plot.

theme ggplot2 theme.

... Additional arguments for the facet_wrap function of ggplot2 if facet.by is not
NULL.

Value

A ggplot object.

See Also

calculateEvalMetrics corrExpPredPlot blandAltmanLehPlot barErrorPlot

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 20,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(20)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(20)),
Cell_Type = sample(

x = paste0("CellType", seq(6)), size = 20, replace = TRUE
)

),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
training of DDLS model

26 estimateZinbwaveParams

SDDLS <- trainDeconvModel(
object = SDDLS,
batch.size = 15,
num.epochs = 5

)
evaluation using test data
SDDLS <- calculateEvalMetrics(object = SDDLS)
representation, for more examples, see the vignettes
distErrorPlot(

object = SDDLS,
error = "AbsErr",
facet.by = "CellType",
color.by = "nCellTypes",
error.label = TRUE

)
distErrorPlot(

object = SDDLS,
error = "AbsErr",
x.by = "CellType",
facet.by = NULL,
color.by = "CellType",
error.label = TRUE

)

estimateZinbwaveParams

Estimate parameters of the ZINB-WaVE model to simulate new single-
cell RNA-Seq expression profiles

Description

Estimate the parameters of the ZINB-WaVE model using a real single-cell RNA-Seq data set as
reference to simulate new single-cell profiles and increase the signal of underrepresented cell types.
This step is only is needed if the size of the single-cell RNA-seq dataset is too small or there are
underrepresented cell types. After this step, the simSCProfiles function will use the estimated
parameters to simulate new single-cell profiles. See ?simSCProfiles for more information.

Usage

estimateZinbwaveParams(
object,
cell.type.column,
cell.ID.column,
gene.ID.column,
cell.cov.columns,
gene.cov.columns,
subset.cells = NULL,

estimateZinbwaveParams 27

proportional = TRUE,
set.type = "All",
threads = 1,
verbose = TRUE

)

Arguments

object SpatialDDLS object with a single.cell.real slot.
cell.type.column

Name or column number corresponding to the cell type of each cell in cells
metadata.

cell.ID.column Name or column number corresponding to the cell names of expression matrix
in cells metadata.

gene.ID.column Name or column number corresponding to the notation used for features/genes
in genes metadata.

cell.cov.columns

Name or column number(s) in cells metadata to be used as covariates during
model fitting (if no covariates are used, set to empty or NULL).

gene.cov.columns

Name or column number(s) in genes metadata that will be used as covariates
during model fitting (if no covariates are used, set to empty or NULL).

subset.cells Number of cells to fit the ZINB-WaVE model. Useful when the original data set
is too large to fit the model. Set a value according to the original data set and the
resources available on your computer. If NULL (by default), all cells will be used.
Must be an integer greater than or equal to the number of cell types considered
and less than or equal to the total number of cells.

proportional If TRUE, the original cell type proportions in the subset of cells generated by
subset.cells will not be altered as far as possible. If FALSE, all cell types will
have the same number of cells as far as possible (TRUE by default).

set.type Cell type(s) to evaluate ('All' by default). It is recommended fitting the model
to all cell types rather than using only a subset of them to capture the total
variability present in the original experiment even if only a subset of cell types
is simulated.

threads Number of threads used for estimation (1 by default). To set up the parallel
environment, the BiocParallel package must be installed.

verbose Show informative messages during the execution (TRUE by default).

Details

ZINB-WaVE is a flexible model for zero-inflated count data. This function carries out the model
fit to real single-cell data modeling Yij (the count of feature j for sample i) as a random variable
following a zero-inflated negative binomial (ZINB) distribution. The estimated parameters will
be used for the simulation of new single-cell expression profiles by sampling a negative binomial
distribution and inserting dropouts from a binomial distribution. To do so, SpatialDDLS uses the
zinbFit function from the zinbwave package (Risso et al., 2018). For more details about the
model, see Risso et al., 2018.

28 estimateZinbwaveParams

Value

A SpatialDDLS object with zinb.params slot containing a ZinbParametersModel object. This
object contains a slot with the estimated ZINB-WaVE parameters from the real single-cell RNA-
Seq data.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978.

See Also

simSCProfiles

Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
project = "Simul_example",
sc.filt.genes.cluster = FALSE

)
SDDLS <- estimateZinbwaveParams(

object = SDDLS,
cell.type.column = "Cell_Type",
cell.ID.column = "Cell_ID",
gene.ID.column = "Gene_ID",
subset.cells = 2,
verbose = TRUE

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.3389/fgene.2019.00978

features 29

)

features Get and set features slot in a DeconvDLModel object

Description

Get and set features slot in a DeconvDLModel object

Usage

features(object)

features(object) <- value

Arguments

object DeconvDLModel object.
value Vector with features (genes) considered by the deep neural network model.

genMixedCellProp Generate training and test cell type composition matrices

Description

Generate training and test cell type composition matrices for the simulation of mixed transcrip-
tional profiles with known cell composition using single-cell expression profiles. The resulting
PropCellTypes object will contain all the information needed to simulate new mixed transcrip-
tional profiles. Note this function does not simulate the mixed profiles, this task is performed by the
simMixedProfiles or trainDeconvModel functions (see Documentation).

Usage

genMixedCellProp(
object,
cell.ID.column,
cell.type.column,
num.sim.spots,
n.cells = 50,
train.freq.cells = 3/4,
train.freq.spots = 3/4,
proportion.method = c(0, 0, 1),
prob.sparity = 1,
min.zero.prop = NULL,
balanced.type.cells = TRUE,
verbose = TRUE

)

30 genMixedCellProp

Arguments

object SpatialDDLS object with single.cell.real slot and, optionally, with single.cell.simul
slot.

cell.ID.column Name or column number corresponding to cell names in cells metadata.
cell.type.column

Name or column number corresponding to cell types in cells metadata.

num.sim.spots Number of mixed profiles to be simulated. It is recommended to adjust this
number according to the number of available single-cell profiles.

n.cells Specifies the number of cells to be randomly selected and combined to generate
the simulated mixed profiles. By default, it is set to 50 It controls the level
of noise present in the simulated data, as it determines how many single-cell
profiles will be combined to produce each spot.

train.freq.cells

Proportion of cells used to simulate training mixed transcriptional profiles (3/4
by default).

train.freq.spots

Proportion of mixed transcriptional profiles to be used for training, relative to
the total number of simulated spots (num.sim.spots). The default value is 3/4.

proportion.method

Vector with three elements that controls the proportion of simulated proportions
generated by each method: random sampling of a Dirichlet distribution, "pure"
spots (1 cell type), and spots generated from a random sampling of a Dirichlet
distribution but with a specified number of different cell types (determined by
min.zero.prop), respectively. By default, all samples are generated by the last
method.

prob.sparity It only affects the proportions generated by the first method (Dirichlet distribu-
tion). It determines the probability of having missing cell types in each sim-
ulated spot, as opposed to a mixture of all cell types. A higher value for this
parameter will result in more sparse simulated samples.

min.zero.prop This parameter controls the minimum number of cell types that will be absent in
each simulated spot. If NULL (by default), this value will be half of the total num-
ber of different cell types, but increasing it will result in more spots composed
of fewer cell types. This helps to create more sparse proportions and cover a
wider range of situations during model training.

balanced.type.cells

Boolean indicating whether training and test cells will be split in a balanced way
considering cell types (TRUE by default).

verbose Show informative messages during the execution (TRUE by default).

Details

First, the single-cell profiles are randomly divided into two subsets, with 2/3 of the data for training
and 1/3 for testing. The default setting for this ratio can be changed using the train.freq.cells
parameter. Next, a total of num.sim.spots mixed proportions are simulated using a Dirichlet distri-
bution. This simulation takes into account the probability of missing cell types in each spot, which

genMixedCellProp 31

can be adjusted using the prob.sparity parameter. For each mixed sample, n.cells single-cell
profiles are randomly selected and combined to generate the simulated mixed sample. In addition
to the Dirichlet-based proportions, pure spots (containing only one cell type) and spots containing
a specified number of different cell types (determined by the min.zero.prop parameter) are also
generated in order to cover situations with only a few cell types present. The proportion of simu-
lated spots generated by each method can be controlled using the proportion.method parameter.
To visualize the distribution of cell type proportions generated by each method, the showProbPlot
function can be used.

Value

A SpatialDDLS object with prob.cell.types slot containing a list with two PropCellTypes ob-
jects (training and test). For more information about the structure of this class, see ?PropCellTypes.

See Also

simMixedProfiles PropCellTypes

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)

SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
project = "Simul_example"

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 10,
train.freq.cells = 2/3,
train.freq.spots = 2/3,

32 installTFpython

verbose = TRUE
)

getProbMatrix Getter function for the cell composition matrix

Description

Getter function for the cell composition matrix. This function allows to access to the cell composi-
tion matrix of simulated mixed transcriptional profiles.

Usage

getProbMatrix(object, type.data)

Arguments

object SpatialDDLS object with prob.cell.types slot.

type.data Subset of data to return: train or test.

Value

Cell type proportion matrix.

See Also

genMixedCellProp

installTFpython Install Python dependencies for SpatialDDLS

Description

This function facilitates the installation of the required Python dependencies for the SpatialDDLS
package. It requires a Python interpreter with the TensorFlow Python library and its dependencies.
It utilizes the reticulate package and the installer of the tensorflow R package to perform the instal-
lation. Conda environments will be used with the new environment being named SpatialDDLS-env.
This function is intended to simplify the installation process for SpatialDDLS by automatically in-
stalling Miniconda and creating a new environment named SpatialDDLS-env. For users who wish
to use a different Python or conda environment, see the tensorflow::use_condaenv function and the
package vignettes for more information.

interGradientsDL 33

Usage

installTFpython(
conda = "auto",
python.version = "3.8",
tensorflow.version = "2.6",
install.conda = FALSE,
miniconda.path = NULL

)

Arguments

conda Path to a conda executable. Using "auto" (by default) allows reticulate to
automatically find an appropriate conda binary.

python.version Python version to be installed in the environment ("3.8" by default). We recom-
mend keeping this version as it has been tested to be compatible with tensorflow
2.6.

tensorflow.version

Tensorflow version to be installed in the environment ("2.6" by default).

install.conda Boolean indicating if installing miniconda automatically by using reticulate. If
TRUE, conda argument is ignored. FALSE by default.

miniconda.path If install.conda is TRUE, you can set the path where miniconda will be in-
stalled. If NULL, conda will find automatically the proper place.

Value

No return value, called for side effects: installation of conda environment with a Python interpreter
and Tensorflow

Examples

Not run:
notesInstallation <- installTFpython(

conda = "auto", install.conda = TRUE
)

End(Not run)

interGradientsDL Calculate gradients of predicted cell types/loss function with respect
to input features for interpreting trained deconvolution models

34 interGradientsDL

Description

This function enables users to gain insights into the interpretability of the deconvolution model. It
calculates the gradients of classes/loss function with respect to the input features used in training.
These numeric values are calculated per gene and cell type in pure mixed transcriptional profiles,
providing information on the extent to which each feature influences the model’s prediction of cell
proportions for each cell type.

Usage

interGradientsDL(
object,
method = "class",
normalize = TRUE,
scaling = "standardize",
verbose = TRUE

)

Arguments

object SpatialDDLS object containing a trained deconvolution model (trained.model
slot) and pure mixed transcriptional profiles (mixed.profiles slot).

method Method to calculate gradients with respect to inputs. It can be 'class' (gradi-
ents of predicted classes w.r.t. inputs), 'loss' (gradients of loss w.r.t. inputs) or
'both'.

normalize Whether to normalize data using logCPM (TRUE by default). This parameter
is only considered when the method used to simulate the mixed transcriptional
profiles (simMixedProfiles function) was "AddRawCount". Otherwise, data
were already normalized. This parameter should be set according to the trans-
formation used to train the model.

scaling How to scale data. It can be: "standardize" (values are centered around the
mean with a unit standard deviation), "rescale" (values are shifted and rescaled
so that they end up ranging between 0 and 1, by default) or "none" (no scaling is
performed). This parameter should be set according to the transformation used
to train the model.

verbose Show informative messages during the execution (TRUE by default).

Details

Gradients of classes / loss function with respect to the input features are calculated exclusively using
pure mixed transcriptional profiles composed of a single cell type. Consequently, these numbers can
be interpreted as the extent to which each feature is being used to predict each cell type proportion.
Gradients are calculated at the sample level for each gene, but only mean gradients by cell type are
reported. For additional details, see Mañanes et al., 2023.

Value

Object containing gradients in the interpret.gradients slot of the DeconvDLModel object (trained.model
slot).

loadSTProfiles 35

See Also

deconvSpatialDDLS plotTrainingHistory

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients
SDDLS <- interGradientsDL(SDDLS)

loadSTProfiles Loads spatial transcriptomics data into a SpatialDDLS object

36 loadSTProfiles

Description

This function loads a SpatialExperiment object (or a list with several SpatialExperiment ob-
jects) into a SpatialDDLS object.

Usage

loadSTProfiles(
object,
st.data,
st.spot.ID.column,
st.gene.ID.column,
st.min.counts = 0,
st.min.spots = 0,
st.n.slides = 3,
verbose = TRUE

)

Arguments

object A SpatialDDLS object.
st.data A SpatialExperiment object (or a list with several SpatialExperiment ob-

jects) to be deconvoluted.
st.spot.ID.column

Name or number of the column in spots metadata corresponding to spot names
in the expression matrix.

st.gene.ID.column

Name or number of the column in genes metadata corresponding to names used
for features/genes.

st.min.counts Minimum gene counts to filter (0 by default).
st.min.spots Minimum of spots with more than min.counts (0 by default).
st.n.slides Minimum number of slides (SpatialExperiment objects) in which a gene has

to be expressed in order to keep it. This parameter is applicable only when
multiple SpatialExperiment objects are provided. Genes not present in at
least st.n.slides will be discarded. If no filtering is desired, set st.n.slides
= 1.

verbose Show informative messages during execution (TRUE by default).

Details

It is recommended to perform this step when creating the SpatialDDLS object using the createSpatialDDLSobject
function in order to only keep genes shared between the spatial transcriptomics and the single-cell
transcriptomics data used as reference. In addition, please, make sure the gene identifiers used the
spatial and single-cell transcriptomics data are consistent.

Value

A SpatialDDLS object with the provided spatial trainscriptomics data loaded into the spatial.experiments
slot.

loadSTProfiles 37

See Also

createSpatialDDLSobject trainDeconvModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)

simulating a SpatialExperiment object
counts <- matrix(rpois(30, lambda = 5), ncol = 6)
rownames(counts) <- paste0("Gene", 1:5)
colnames(counts) <- paste0("Spot", 1:6)
coordinates <- matrix(

c(1, 2, 3, 1, 2, 3, 1, 2, 3, 1, 2, 3), ncol = 2
)
ste <- SpatialExperiment::SpatialExperiment(

assays = list(counts = as.matrix(counts)),
rowData = data.frame(Gene_ID = paste0("Gene", 1:5)),
colData = data.frame(Cell_ID = paste0("Spot", 1:6)),
spatialCoords = coordinates

)

previous SpatialDDLS object
SDDLS <- loadSTProfiles(

object = SDDLS,
st.data = ste,
st.spot.ID.column = "Cell_ID",
st.gene.ID.column = "Gene_ID"

)

38 method

loadTrainedModelFromH5

Load from an HDF5 file a trained deep neural network model into a
SpatialDDLS object

Description

Load from an HDF5 file a trained deep neural network model into a SpatialDDLS object. Note that
HDF5 file must be a valid trained model (keras object).

Usage

loadTrainedModelFromH5(object, file.path, reset.slot = FALSE)

Arguments

object SpatialDDLS object with trained.model slot.
file.path Valid file path where the model are stored.
reset.slot Deletes trained.slot if it already exists. A new DeconvDLModel object will

be formed, but will not contain other slots (FALSE by default).

Value

SpatialDDLS object with trained.model slot with the new keras DNN model incorporated.

See Also

trainDeconvModel saveTrainedModelAsH5

method Get and set method slot in a PropCellTypes object

Description

Get and set method slot in a PropCellTypes object

Usage

method(object)

method(object) <- value

Arguments

object PropCellTypes object.
value Vector containing the method by which cell type proportions were generated.

mixed.profiles 39

mixed.profiles Get and set mixed.profiles slot in a SpatialDDLS object

Description

Get and set mixed.profiles slot in a SpatialDDLS object

Usage

mixed.profiles(object, type.data = "both")

mixed.profiles(object, type.data = "both") <- value

Arguments

object SpatialDDLS object.

type.data Type of data to return. It can be 'both' (default), 'train', or 'test'.

value List with two SummarizedExperiment objects, train and test, each one contain-
ing simulated mixed transcriptional profiles.

model Get and set model slot in a DeconvDLModel object

Description

Get and set model slot in a DeconvDLModel object

Usage

model(object)

model(object) <- value

Arguments

object DeconvDLModel object.

value keras.engine.sequential.Sequential object with a trained deep neural net-
work model.

40 plotDistances

plotDistances Plot distances between intrinsic and extrinsic profiles

Description

Color spots on the spatial coordinates according to distances between intrinsic and extrinsic tran-
scriptional profiles.

Usage

plotDistances(
object,
index.st,
mid.scale = "mean",
size.point = 1,
title = NULL,
theme = NULL

)

Arguments

object A SpatialDDLS object.

index.st Index of the spatial transcriptomics data to be plotted. It can be either a position
or a name if a named list was provided.

mid.scale The midpoint of the diverging scale. it may be 'mean' or 'median' (the former
by default).

size.point Size of points (0.1 by default).

title Title of plot.

theme ggplot2 theme.

Value

A ggplot object.

See Also

deconvSpatialDDLS trainDeconvModel

plotHeatmapGradsAgg 41

plotHeatmapGradsAgg Plot a heatmap of gradients of classes / loss function wtih respect to
the input

Description

Plot a heatmap showing the top positive and negative gene average gradients per cell type.

Usage

plotHeatmapGradsAgg(
object,
method = "class",
top.n.genes = 15,
scale.gradients = TRUE

)

Arguments

object SpatialDDLS object with a DeconvDLModel object containing gradients in the
interpret.gradients slot.

method Method to calculate gradients with respect to input features. It can be 'class'
(gradients of predicted classes w.r.t. input features) or 'loss' (gradients of loss
w.r.t. input features) ('class' by default).

top.n.genes Top n genes (positive and negative) taken per cell type.
scale.gradients

Whether to calculate feature-wise z-scores of gradients (TRUE by default).

Value

A list of Heatmap-class objects, one for top positive and another one for top negative gradients.

See Also

interGradientsDL trainDeconvModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

42 plots

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients
SDDLS <- interGradientsDL(SDDLS)
plotHeatmapGradsAgg(SDDLS, top.n.genes = 2)

plots Get and set plots slot in a PropCellTypes object

Description

Get and set plots slot in a PropCellTypes object

Usage

plots(object)

plots(object) <- value

plotSpatialClustering 43

Arguments

object PropCellTypes object.

value List of lists with plots showing the distribution of cell proportions generated by
each method.

plotSpatialClustering Plot results of clustering based on predicted cell proportions

Description

Color spots on the spatial coordinates according to the results of clustering based on predicted
proportions.

Usage

plotSpatialClustering(
object,
index.st,
method,
k.nn,
k.centers,
colors,
size.point = 1,
title = NULL,
theme = NULL

)

Arguments

object A SpatialDDLS object.

index.st Index of the spatial transcriptomics data to be plotted. It can be either a position
or a name if a named list of SpatialExperiment objects was provided.

method Clustering method results to plot. It can be "graph" or "k.means". If missing,
the first configuration found in the object will be plotted.

k.nn Number of nearest neighbors used if method == "graph".

k.centers Number of k centers used if method == "k.means".

colors Vector of colors to be used.

size.point Size of points (0.1 by default).

title Title of plot.

theme ggplot2 theme.

Value

A ggplot object.

44 plotSpatialGeneExpr

See Also

spatialPropClustering deconvSpatialDDLS

plotSpatialGeneExpr Plot normalized gene expression data (logCPM) in spatial coordinates

Description

Color spots on the spatial coordinates according to the logCPM values of a particular gene.

Usage

plotSpatialGeneExpr(
object,
index.st,
gene,
colors = "spectral",
size.point = 1,
title = NULL,
theme = NULL

)

Arguments

object A SpatialDDLS object.

index.st Index of the spatial transcriptomics data to be plotted. It can be either a position
or a name if a named list of SpatialExperiment objects was provided.

gene Gene to color spots by.

colors Color scale to be used. It can be "blues" or "spectral" (the latter by default).

size.point Size of points (0.1 by default).

title Title of plot.

theme ggplot2 theme.

Value

A ggplot object.

See Also

interGradientsDL topGradientsCellType

plotSpatialProp 45

plotSpatialProp Plot predicted proportions for a specific cell type using spatial coor-
dinates of spots

Description

Color spots on the spatial coordinates according to the predicted proportions of a particular cell
type. Color scale is adapted depending on the range of predicted proportions.

Usage

plotSpatialProp(
object,
index.st,
cell.type,
colors = "blues",
set = "raw",
prediction = "Regularized",
limits = NULL,
size.point = 1,
title = NULL,
theme = NULL

)

Arguments

object A SpatialDDLS object.

index.st Index of the spatial transcriptomics data to be plotted. It can be either a position
or a name if a named list of SpatialExperiment objects was provided.

cell.type Cell type predicted proportions to color spots by.

colors Color scale to be used. It can be "blues" or "spectral" (the former by default).

set If results were simplified (see ?deconvSpatialDDLS for details), what results to
plot (raw by default).

prediction It can be "Regularized", "Intrinsic" or "Extrinsic" ("Regularized" by
default).

limits A vector of two elements indicating wanted limits for color scale. If NULL (by
default), color scale is adjusted to max and min predicted proportions.

size.point Size of points (0.1 by default).

title Title of plot.

theme ggplot2 theme.

Value

A ggplot object.

46 plotSpatialPropAll

See Also

plotSpatialPropAll deconvSpatialDDLS trainDeconvModel

plotSpatialPropAll Plot predicted proportions for all cell types using spatial coordinates
of spots

Description

Color spots on the spatial coordinates plot according to their predicted cell type proportions. All
cell types are represented together using the same color scale from 0 to 1.

Usage

plotSpatialPropAll(
object,
index.st,
colors = "blues",
set = "raw",
prediction = "Regularized",
size.point = 0.1,
title = NULL,
nrow = NULL,
ncol = NULL,
theme = NULL

)

Arguments

object A SpatialDDLS object.

index.st Index of the spatial transcriptomics data to be plotted. It can be either a position
or a name if a named list of SpatialExperiment objects was provided.

colors Color scale to be used. It can be "blues" or "spectral" (the former by default).

set If results were simplified (see ?deconvSpatialDDLS for details), which results
to plot (raw by default).

prediction It can be "Regularized", "Intrinsic" or "Extrinsic" ("Regularized" by
default).

size.point Size of points (0.1 by default).

title Title of plot.

nrow Number of rows in the split plot.

ncol Number of columns in the split plot.

theme ggplot2 theme.

plotTrainingHistory 47

Value

A ggplot object.

See Also

plotSpatialProp deconvSpatialDDLS trainDeconvModel

plotTrainingHistory Plot training history of a trained SpatialDDLS deep neural network
model

Description

Plot training history of a trained SpatialDDLS deep neural network model.

Usage

plotTrainingHistory(
object,
title = "History of metrics during training",
metrics = NULL

)

Arguments

object SpatialDDLS object with a trained.model slot.

title Title of plot.

metrics Metrics to be plotted. If NULL (by default), all metrics available in the DeconvDLModel
object will be plotted.

Value

A ggplot object with the progression of the selected metrics during training.

See Also

trainDeconvModel

48 prob.cell.types

preparingToSave Prepare SpatialDDLS object to be saved as an RDA file

Description

This function prepares a SpatialDDLS object to be saved as an RDA file when contains a DeconvDLModel
object with a trained DNN model.

Usage

preparingToSave(object)

Arguments

object SpatialDDLS object with a trained.data slot containing a DeconvDLModel
object with a trained DNN model.

Details

Since keras models cannot be saved natively as R objects, this function saves the structure of
the model as a JSON-like character object and its weights as a list. This allows for the retrieval
of the model and making predictions. It is important to note that the state of the optimizer is
not saved, only the model’s architecture and weights. To save the entire model, please see the
saveTrainedModelAsH5 and loadTrainedModelFromH5 functions.

It is also possible to save a SpatialDDLS object as an RDS file with the saveRDS function without
any preparation.

Value

A SpatialDDLS or DeconvDLModel object with its trained keras model transformed from a keras.engine.sequential.Sequential
class into a list with its architecture as a JSON-like character object, and its weights as a list.

See Also

saveRDS saveTrainedModelAsH5

prob.cell.types Get and set prob.cell.types slot in a SpatialDDLS object

Description

Get and set prob.cell.types slot in a SpatialDDLS object

prob.matrix 49

Usage

prob.cell.types(object, type.data = "both")

prob.cell.types(object, type.data = "both") <- value

Arguments

object SpatialDDLS object.
type.data Type of data to return. It can be 'both' (default), 'train', or 'test'.
value List with two PropCellTypes objects corresponding to train and test data.

prob.matrix Get and set prob.matrix slot in a PropCellTypes object

Description

Get and set prob.matrix slot in a PropCellTypes object

Usage

prob.matrix(object)

prob.matrix(object) <- value

Arguments

object PropCellTypes object.
value Matrix with cell types as columns and samples as rows.

project Get and set project slot in a SpatialDDLS object

Description

Get and set project slot in a SpatialDDLS object

Usage

project(object)

project(object) <- value

Arguments

object SpatialDDLS object.
value Character indicating the name of the project.

50 saveRDS

PropCellTypes-class The PropCellTypes Class

Description

The PropCellTypes class is a data storage class which contains information related to cell type
composition matrices used to simulate mixed transcriptional profiles. This matrix is stored in the
prob.matrix slot while the other slots contain additional information generated during the process
and required for subsequent steps.

Details

See ?genMixedCellProp function for information about how cell type composition matrices are
generated. Plots of cell type proportion distributions can be accessed using the showProbPlot
function (see ?showProbPlot for more details).

Slots

prob.matrix Matrix of cell type proportions to simulate mixed transcriptional profiles.

cell.names Matrix containing cells used to generate the simulated mixed transcriptional profiles.

set.list List of cells sorted by cell type.

set Vector containing cell names present in the object.

method Vector indicating the method by which cell type proportions were generated.

plots Plots showing cell type proportion distributions. See ?showProbPlot for more details.

type.data Character indicating the type of data contained: 'train' or 'test'.

saveRDS Save SpatialDDLS objects as RDS files

Description

Save SpatialDDLS and DeconvDLModel objects as RDS files. keras models cannot be stored na-
tively as R objects (e.g. RData or RDS files). By saving the architecture as a JSON-like character
object and the weights as a list, it is possible to retrieve a functional model and make new pre-
dictions. If the trained.model slot is empty, the function will behave as usual. Note: with this
option, the state of optimizer is not saved, only model’s architecture and weights. It is possible to
save the entire model as an HDF5 file with the saveTrainedModelAsH5 function and load it into a
SpatialDDLS object with the loadTrainedModelFromH5 function. See documentation for details.

saveRDS 51

Usage

saveRDS(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'DeconvDLModel'
saveRDS(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

S4 method for signature 'SpatialDDLS'
saveRDS(
object,
file,
ascii = FALSE,
version = NULL,
compress = TRUE,
refhook = NULL

)

Arguments

object SpatialDDLS or DeconvDLModel object to be saved

file File path where the object will be saved

ascii a logical. If TRUE or NA, an ASCII representation is written; otherwise (default),
a binary one is used. See the comments in the help for save.

version the workspace format version to use. NULL specifies the current default version
(3). The only other supported value is 2, the default from R 1.4.0 to R 3.5.0.

compress a logical specifying whether saving to a named file is to use "gzip" compres-
sion, or one of "gzip", "bzip2" or "xz" to indicate the type of compression to
be used. Ignored if file is a connection.

refhook a hook function for handling reference objects.

Value

No return value, saves a SpatialDDLS object as an RDS file on disk.

52 set

See Also

SpatialDDLS saveTrainedModelAsH5

saveTrainedModelAsH5 Save a trained SpatialDDLS deep neural network model to disk as an
HDF5 file

Description

Save a trained SpatialDDLS deep neural network model to disk as an HDF5 file. Note that this func-
tion does not save the DeconvDLModel object, only the trained keras model. This is the alternative
to the saveRDS and preparingToSave functions if you want to keep the state of the optimizer.

Usage

saveTrainedModelAsH5(object, file.path, overwrite = FALSE)

Arguments

object SpatialDDLS object with trained.model slot.
file.path Valid file path where to save the model to.
overwrite Overwrite file if it already exists.

Value

No return value, saves a keras DNN trained model as HDF5 file on disk.

See Also

trainDeconvModel loadTrainedModelFromH5

set Get and set set slot in a PropCellTypes object

Description

Get and set set slot in a PropCellTypes object

Usage

set(object)

set(object) <- value

Arguments

object PropCellTypes object.
value A vector containing the names of cells that are present in the object.

set.list 53

set.list Get and set set.list slot in a PropCellTypes object

Description

Get and set set.list slot in a PropCellTypes object

Usage

set.list(object)

set.list(object) <- value

Arguments

object PropCellTypes object.

value List of cells sorted by their corresponding cell type.

showProbPlot Show distribution plots of the cell proportions generated by
genMixedCellProp

Description

Show distribution plots of the cell proportions generated by the genMixedCellProp function.

Usage

showProbPlot(object, type.data, set, type.plot = "boxplot")

Arguments

object SpatialDDLS object with prob.cell.types slot with plot slot.

type.data Subset of data to show: train or test.

set Integer determining which of the 6 different subsets to display.

type.plot Character determining which type of visualization to display. It can be 'boxplot',
'violinplot', 'linesplot' or 'ncelltypes'. See Description for more in-
formation.

Details

These frequencies will determine the proportion of different cell types used during the simulation
of mixed transcriptional profiles. Proportions generated by each method (see ?genMixedCellProp)
can be visualized in three ways: box plots, violin plots, and lines plots. You can also plot the
probabilities based on the number of different cell types present in the samples by setting type.plot
= 'nCellTypes'.

54 showProbPlot

Value

A ggplot object.

See Also

genMixedCellProp

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)

SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
project = "Simul_example",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 10,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
showProbPlot(

SDDLS,
type.data = "train",
set = 1,
type.plot = "boxplot"

)

simMixedProfiles 55

simMixedProfiles Simulate training and test mixed spot profiles

Description

Simulate training and test mixed spot transcriptional profiles using cell composition matrices gen-
erated by the genMixedCellProp function.

Usage

simMixedProfiles(
object,
type.data = "both",
mixing.function = "AddRawCount",
file.backend = NULL,
compression.level = NULL,
block.processing = FALSE,
block.size = 1000,
chunk.dims = NULL,
threads = 1,
verbose = TRUE

)

Arguments

object SpatialDDLS object with single.cell.real/single.cell.simul, and prob.cell.types
slots.

type.data Type of data to generate: 'train', 'test' or 'both' (the last by default).
mixing.function

Function used to build mixed transcriptional profiles. It may be:
• "AddRawCount": single-cell profiles (raw counts) are added up across cells.

Then, log-CPMs are calculated (by default).
• "MeanCPM": single-cell profiles (raw counts) are transformed into CPMs

and cross-cell averages are calculated. Then, log2(CPM + 1) is calculated.
• "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and

are added up across cells. Then, log-CPMs are calculated.
file.backend Valid file path to store simulated mixed expression profiles as an HDF5 file

(NULL by default). If provided, data are stored in HDF5 files used as back-end by
using the DelayedArray, HDF5Array and rhdf5 packages instead of loading
all data into RAM. Note that operations on this matrix will be performed in
blocks (i.e subsets of determined size) which may result in longer execution
times.

compression.level

The compression level used if file.backend is provided. It is an integer value
between 0 (no compression) and 9 (highest and slowest compression). See
?getHDF5DumpCompressionLevel from the HDF5Array package for more in-
formation.

56 simMixedProfiles

block.processing

Boolean indicating whether data should be simulated in blocks (only if file.backend
is used, FALSE by default). This functionality is suitable for cases where it is not
possible to load all data into memory, and it leads to longer execution times.

block.size Only if block.processing = TRUE. Number of mixed expression profiles that
will be simulated in each iteration. Larger numbers result in higher memory
usage but shorter execution times. Set accordingly to available computational
resources (1000 by default).

chunk.dims Specifies the dimensions that HDF5 chunk will have. If NULL, the default value
is a vector of two items: the number of genes considered by SpatialDDLS object
during the simulation, and a single sample to reduce read times in the following
steps. A larger number of columns written in each chunk can lead to longer read
times.

threads Number of threads used during simulation (1 by default).

verbose Show informative messages during the execution (TRUE by default).

Details

Mixed profiles are generated under the assumption that the expression level of a particular gene
in a given spot is the sum of the expression levels of the cell types that make it up weighted by
their proportions. In practice, as described in Torroja and Sanchez-Cabo, 2019, these profiles are
generated by summing gene expression levels of a determined number of cells specified by a known
cell composition matrix. The number of simulated spots and cells used to simulate each spot are
determined by the genMixedCellProp function. This step can be avoided by using the on.the.fly
argument in the trainDeconvModel function.

SpatialDDLS allows to use HDF5 files as back-end to store simulated data using the DelayedAr-
ray and HDF5Array packages. This functionality allows to work without keeping the data loaded
into RAM, which could be useful during some computationally heavy steps such as neural net-
work training on RAM-limited machines. You must provide a valid file path in the file.backend
argument to store the resulting file with the ’.h5’ extension. This option slows down execution
times, as subsequent transformations of the data will be done in blocks. Note that if you use the
file.backend argument with block.processing = FALSE, all mixed profiles will be simulated in
one step and, thus, loaded into RAM. Then, the matrix will be written to an HDF5 file. To avoid the
RAM collapse, these profiles can be simulated and written to HDF5 files in blocks of block.size
size by setting block.processing = TRUE. We recommend this option accordingly to the compu-
tational resources available and the number of simulated spots to be generated, but, in most of the
cases, it is not necessary.

Value

A SpatialDDLS object with mixed.profiles slot containing a list with one or two entries (depend-
ing on selected type.data argument): 'train' and 'test'. Each entry consists of a SummarizedExperiment
object with the simulated mixed slot profiles.

References

Fischer B, Smith M and Pau, G (2020). rhdf5: R Interface to HDF5. R package version 2.34.0.

simMixedProfiles 57

Pagès H, Hickey P and Lun A (2020). DelayedArray: A unified framework for working transpar-
ently with on-disk and in-memory array-like datasets. R package version 0.16.0.

Pagès H (2020). HDF5Array: HDF5 backend for DelayedArray objects. R package version 1.18.0.

See Also

genMixedCellProp PropCellTypes trainDeconvModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(100, lambda = 5), nrow = 40, ncol = 30,
dimnames = list(paste0("Gene", seq(40)), paste0("RHC", seq(30)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(30)),
Cell_Type = sample(x = paste0("CellType", seq(4)), size = 30,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(40))
)

)

SDDLS <- createSpatialDDLSobject(
sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
project = "Simul_example"

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 10,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS, verbose = TRUE)

58 simSCProfiles

simSCProfiles Simulate new single-cell RNA-Seq expression profiles using the ZINB-
WaVE model parameters

Description

Simulate single-cell expression profiles by randomly sampling from a negative binomial distribution
and inserting dropouts by sampling from a binomial distribution using the ZINB-WaVE parameters
estimated by the estimateZinbwaveParams function.

Usage

simSCProfiles(
object,
cell.ID.column,
cell.type.column,
n.cells,
suffix.names = "_Simul",
cell.types = NULL,
file.backend = NULL,
name.dataset.backend = NULL,
compression.level = NULL,
block.processing = FALSE,
block.size = 1000,
chunk.dims = NULL,
verbose = TRUE

)

Arguments

object SpatialDDLS object with single.cell.real and zinb.params slots.

cell.ID.column Name or column number corresponding to the cell names of expression matrix
in cells metadata.

cell.type.column

Name or column number corresponding to the cell type of each cell in cells
metadata.

n.cells Number of simulated cells generated per cell type (i.e. if you have 10 differ-
ent cell types in your dataset, if n.cells = 100, then 1000 cell profiles will be
simulated).

suffix.names Suffix used on simulated cells. This suffix must be unique in the simulated cells,
so make sure that this suffix does not appear in the real cell names.

cell.types Vector indicating the cell types to simulate. If NULL (by default), n.cells single-
cell profiles for all cell types will be simulated.

file.backend Valid file path to store the simulated single-cell expression profiles as an HDF5
file (NULL by default). If provided, the data are stored in HDF5 files used as

simSCProfiles 59

back-end by using the DelayedArray, HDF5Array and rhdf5 packages instead
of loading all data into RAM memory. This is suitable for situations where
you have large amounts of data that cannot be loaded into memory. Note that
operations on this data will be performed in blocks (i.e subsets of determined
size) which may result in longer execution times.

name.dataset.backend

Name of the dataset in HDF5 file to be used. Note that it cannot exist. If NULL
(by default), a random dataset name will be used.

compression.level

The compression level used if file.backend is provided. It is an integer value
between 0 (no compression) and 9 (highest and slowest compression). See
?getHDF5DumpCompressionLevel from the HDF5Array package for more in-
formation.

block.processing

Boolean indicating whether the data should be simulated in blocks (only if
file.backend is used, FALSE by default). This functionality is suitable for
cases where is not possible to load all data into memory and it leads to larger
execution times.

block.size Only if block.processing = TRUE. Number of single-cell expression profiles
that will be simulated in each iteration during the process. Larger numbers result
in higher memory usage but shorter execution times. Set according to available
computational resources (1000 by default). Note that it cannot be greater than
the total number of simulated cells.

chunk.dims Specifies the dimensions that HDF5 chunk will have. If NULL, the default value
is a vector of two items: the number of genes considered by the ZINB-WaVE
model during the simulation and a single sample in order to reduce read times in
the following steps. A larger number of columns written in each chunk can lead
to longer read times in subsequent steps. Note that it cannot be greater than the
dimensions of the simulated matrix.

verbose Show informative messages during the execution (TRUE by default).

Details

Before this step, see ?estimateZinbwaveParams. As described in Torroja and Sanchez-Cabo,
2019, this function simulates a given number of transcriptional profiles for each cell type pro-
vided by randomly sampling from a negative binomial distribution with µ and θ estimated param-
eters and inserting dropouts by sampling from a binomial distribution with probability pi. All
parameters are estimated from single-cell real data using the estimateZinbwaveParams func-
tion. It uses the ZINB-WaVE model (Risso et al., 2018). For more details about the model, see
?estimateZinbwaveParams and Risso et al., 2018.

The file.backend argument allows to create a HDF5 file with simulated single-cell profiles to be
used as back-end to work with data stored on disk instead of loaded into RAM. If the file.backend
argument is used with block.processing = FALSE, all the single-cell profiles will be simulated in
one step and, therefore, loaded into in RAM memory. Then, data will be written in HDF5 file. To
avoid to collapse RAM memory if too many single-cell profiles are goin to be simulated, single-
cell profiles can be simulated and written to HDF5 files in blocks of block.size size by setting
block.processing = TRUE.

60 simSCProfiles

Value

A SpatialDDLS object with single.cell.simul slot containing a SingleCellExperiment object
with the simulated single-cell expression profiles.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

Torroja, C. and Sánchez-Cabo, F. (2019). digitalDLSorter: A Deep Learning algorithm to quan-
tify immune cell populations based on scRNA-Seq data. Frontiers in Genetics 10, 978. doi:
doi:10.3389/fgene.2019.00978.

See Also

estimateZinbwaveParams

Examples

set.seed(123) # reproducibility
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE,
project = "Simul_example"

)
SDDLS <- estimateZinbwaveParams(

object = SDDLS,
cell.type.column = "Cell_Type",
cell.ID.column = "Cell_ID",
gene.ID.column = "Gene_ID",
subset.cells = 2,
verbose = TRUE

)

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.3389/fgene.2019.00978

single.cell.real 61

SDDLS <- simSCProfiles(
object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
n.cells = 2,
verbose = TRUE

)

single.cell.real Get and set single.cell.real slot in a SpatialDDLS object

Description

Get and set single.cell.real slot in a SpatialDDLS object

Usage

single.cell.real(object)

single.cell.real(object) <- value

Arguments

object SpatialDDLS object.

value SingleCellExperiment object with real single-cell profiles.

single.cell.simul Get and set single.cell.simul slot in a SpatialDDLS object

Description

Get and set single.cell.simul slot in a SpatialDDLS object

Usage

single.cell.simul(object)

single.cell.simul(object) <- value

Arguments

object SpatialDDLS object.

value SingleCellExperiment object with simulated single-cell profiles.

62 SpatialDDLS-class

spatial.experiments Get and set spatial.experiments slot in a SpatialDDLS object

Description

Get and set spatial.experiments slot in a SpatialDDLS object

Usage

spatial.experiments(object, index.st = NULL)

spatial.experiments(object, index.st = NULL) <- value

Arguments

object SpatialDDLS object.

index.st Index of the spatial transcriptomics data within the list. It can be either an po-
sition or a name if a named list was provided. If NULL (by default), all data
contained in the spatial.experiments slot are returned.

value List in which each element is a SpatialExperiment object. It can be a named
list.

SpatialDDLS-class The SpatialDDLS Class

Description

The SpatialDDLS object is the core of the SpatialDDLS package. This object stores different inter-
mediate data needed for the construction of new deconvolution models, the spatial transcriptomics
profiles to be deconvoluted, and the predicted cell type proportions.

Details

This object uses other classes to store different types of data generated during the workflow:

• SingleCellExperiment class for single-cell RNA-Seq data storage, using sparse matrix from
the Matrix package (dgCMatrix class) or HDF5Array class in case of using HDF5 files as
back-end (see below for more information).

• SpatialExperiment class for spatial transcriptomics data storage.

• ZinbModel class with estimated parameters for the simulation of new single-cell profiles.

• SummarizedExperiment class for simulated mixed transcriptional profiles storage.

• PropCellTypes class for composition cell type matrices. See ?PropCellTypes for details.

• DeconvDLModel class to store information related to deep neural network models. See ?DeconvDLModel
for details.

SpatialDDLS-Rpackage 63

In order to provide a way to work with large amounts of data in RAM-constrained machines, we
provide the possibility of using HDF5 files as back-end to store count matrices of both real and sim-
ulated single-cell profiles by using the HDF5Array and DelayedArray classes from the homony-
mous packages.

Slots

single.cell.real Real single-cell data stored in a SingleCellExperiment object. The count
matrix is stored either as dgCMatrix or HDF5Array objects.

spatial.experiments List of SpatialExperiment objects to be deconvoluted.

zinb.params ZinbModel object with estimated parameters for the simulation of new single-cell
expression profiles.

single.cell.simul Simulated single-cell expression profiles using the ZINB-WaVE model.

prob.cell.types PropCellTypes class with cell composition matrices built for the simulation of
mixed transcriptional profiles with known cell composition.

mixed.profiles List of simulated train and test mixed transcriptional profiles. Each entry is a
SummarizedExperiment object. Count matrices can be stored as HDF5Array objects using
HDF5 files as back-end in case of RAM limitations.

trained.model DeconvDLModel object with information related to the deconvolution model. See
?DeconvDLModel for more details.

deconv.spots Deconvolution results. It consists of a list where each element corresponds to the
results for each SpatialExperiment object contained in the spatial.experiments slot.

project Name of the project.

version Version of SpatialDDLS this object was built under.

SpatialDDLS-Rpackage SpatialDDLS: an R package to deconvolute spatial transcriptomics
data using deep neural networks

Description

SpatialDDLS is an R package that provides a neural network-based solution for cell type deconvo-
lution of spatial transcriptomics data. The package takes advantage of single-cell RNA sequencing
(scRNA-seq) data to simulate mixed transcriptional profiles with known cell composition and train
fully-connected neural networks to predict the cell type composition of spatial transcriptomics spots.
The resulting trained models can be applied to new spatial transcriptomics data to predict cell type
proportions, allowing for more accurate cell type identification and characterization of spatially-
resolved transcriptomic data. Finally, predictions are forced to keep spatial consistency through a
process we refer to as spatial regularization. Overall, SpatialDDLS is a powerful tool for cell type
deconvolution in spatial transcriptomics data, providing a reliable, fast and flexible solution for re-
searchers in the field. See Mañanes et al. (2024) (doi:10.1093/bioinformatics/btae072) and some
examples (https://diegommcc.github.io/SpatialDDLS/) for more details.

https://doi.org/10.1093/bioinformatics/btae072
https://diegommcc.github.io/SpatialDDLS/

64 spatialPropClustering

spatialPropClustering Cluster spatial data based on predicted cell proportions

Description

Cluster spatial transcriptomics data according to the cell proportions predicted in each spot. It
allows to segregate ST data into niches with similar cell composition.

Usage

spatialPropClustering(
object,
index.st,
method = "graph",
k.nn = 10,
k.centers = 5,
verbose = TRUE

)

Arguments

object SpatialDDLS object with deconvoluted ST datasets.

index.st Name or index of the dataset/slide already deconvoluted to be clustered. If miss-
ing, all datasets already deconvoluted will be clustered.

method Clustering method. It can be graph (a nearest neighbor graph is created and
Louvain algorithm is used to detect communities) or k.means (k-means algo-
rithm is run with the specified number of centers (k.centers parameter)).

k.nn An integer specifying the number of nearest neighbors to be used during graph
construction (10 by default). Only if method == "graph".

k.centers An integer specifying the number of centers for k-means algorithm (5 by de-
fault). Only if method == "k.means".

verbose Show informative messages during the execution (TRUE by default).

Value

A SpatialDDLS object containing computed clusters as a column in the slot colData of the SpatialExperiment
objects.

See Also

plotTrainingHistory deconvSpatialDDLS

spatialPropClustering 65

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(

SDDLS,
batch.size = 12,
num.epochs = 5

)
simulating spatial data
ngenes <- sample(3:40, size = 1)
ncells <- sample(10:40, size = 1)
counts <- matrix(

rpois(ngenes * ncells, lambda = 5), ncol = ncells,
dimnames = list(paste0("Gene", seq(ngenes)), paste0("Spot", seq(ncells)))

)
coordinates <- matrix(

rep(c(1, 2), ncells), ncol = 2
)
st <- SpatialExperiment::SpatialExperiment(

assays = list(counts = as.matrix(counts)),
rowData = data.frame(Gene_ID = paste0("Gene", seq(ngenes))),

66 test.metrics

colData = data.frame(Cell_ID = paste0("Spot", seq(ncells))),
spatialCoords = coordinates

)
SDDLS <- loadSTProfiles(

object = SDDLS,
st.data = st,
st.spot.ID.column = "Cell_ID",
st.gene.ID.column = "Gene_ID"

)
SDDLS <- deconvSpatialDDLS(

SDDLS,
index.st = 1

)
SDDLS <- spatialPropClustering(SDDLS, index.st = 1, k.nn = 5)

test.deconv.metrics Get and set test.deconv.metrics slot in a DeconvDLModel object

Description

Get and set test.deconv.metrics slot in a DeconvDLModel object

Usage

test.deconv.metrics(object, metrics = "All")

test.deconv.metrics(object, metrics = "All") <- value

Arguments

object DeconvDLModel object.

metrics Metrics to show ('All' by default)

value List with evaluation metrics to assess the performance of the model on each
sample of test data.

test.metrics Get and set test.metrics slot in a DeconvDLModel object

Description

Get and set test.metrics slot in a DeconvDLModel object

test.pred 67

Usage

test.metrics(object)

test.metrics(object) <- value

Arguments

object DeconvDLModel object.

value List with evaluation metrics after prediction on test data.

test.pred Get and set test.pred slot in a DeconvDLModel object

Description

Get and set test.pred slot in a DeconvDLModel object

Usage

test.pred(object)

test.pred(object) <- value

Arguments

object DeconvDLModel object.

value Matrix object with prediction results on test data.

topGradientsCellType Get top genes with largest/smallest gradients per cell type

Description

Retrieve feature names with the largest/smallest gradients per cell type. These genes can be used to
visualize their spatial expression in the ST data (plotGeneSpatial function) or to plot the calcu-
lated gradients as a heatmap (plotGradHeatmap function).

Usage

topGradientsCellType(object, method = "class", top.n.genes = 15)

68 topGradientsCellType

Arguments

object SpatialDDLS object with a DeconvDLModel object containing gradients in the
interpret.gradients slot.

method Method gradients were calculated by. It can be either 'class' (gradients of
predicted classes w.r.t. inputs) or 'loss' (gradients of loss w.r.t. input features).

top.n.genes Top n genes (positive and negative) taken per cell type.

Value

List of gene names with the top positive and negative gradients per cell type.

See Also

interGradientsDL trainDeconvModel

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(

trainDeconvModel 69

object = SDDLS,
batch.size = 12,
num.epochs = 5

)
calculating gradients
SDDLS <- interGradientsDL(SDDLS)
listGradients <- topGradientsCellType(SDDLS)
lapply(listGradients, head, n = 5)

trainDeconvModel Train deconvolution model for spatial transcriptomics data

Description

Train a deep neural network model using training data from the SpatialDDLS object. This model
will be used to deconvolute spatial transcriptomics data from the same biological context as the
single-cell RNA-seq data used to train it. In addition, the trained model is evaluated using test data,
and prediction results are obtained to determine its performance (see ?calculateEvalMetrics).

Usage

trainDeconvModel(
object,
type.data.train = "mixed",
type.data.test = "mixed",
batch.size = 64,
num.epochs = 60,
num.hidden.layers = 2,
num.units = c(200, 200),
activation.fun = "relu",
dropout.rate = 0.25,
loss = "kullback_leibler_divergence",
metrics = c("accuracy", "mean_absolute_error", "categorical_accuracy"),
normalize = TRUE,
scaling = "standardize",
norm.batch.layers = TRUE,
custom.model = NULL,
shuffle = TRUE,
sc.downsampling = NULL,
use.generator = FALSE,
on.the.fly = FALSE,
agg.function = "AddRawCount",
threads = 1,
view.metrics.plot = TRUE,
verbose = TRUE

)

70 trainDeconvModel

Arguments

object SpatialDDLS object with single.cell.real/single.cell.simul, prob.cell.types,
and mixed.profiles slots (the last only if on.the.fly = FALSE).

type.data.train

Type of profiles to be used for training. It can be 'both', 'single-cell' or
'mixed' ('mixed' by default).

type.data.test Type of profiles to be used for evaluation. It can be 'both', 'single-cell' or
'mixed' ('mixed' by default).

batch.size Number of samples per gradient update (64 by default).

num.epochs Number of epochs to train the model (60 by default).
num.hidden.layers

Number of hidden layers of the neural network (2 by default). This number must
be equal to the length of num.units argument.

num.units Vector indicating the number of neurons per hidden layer (c(200, 200) by de-
fault). The length of this vector must be equal to the num.hidden.layers argu-
ment.

activation.fun Activation function ('relu' by default). See the keras documentation to know
available activation functions.

dropout.rate Float between 0 and 1 indicating the fraction of input neurons to be dropped
in layer dropouts (0.25 by default). By default, SpatialDDLS implements 1
dropout layer per hidden layer.

loss Character indicating loss function selected for model training ('kullback_leibler_divergence'
by default). See the keras documentation to know available loss functions.

metrics Vector of metrics used to assess model performance during training and evalua-
tion (c("accuracy", "mean_absolute_error", "categorical_accuracy")
by default). See the keras documentation to know available performance met-
rics.

normalize Whether to normalize data using logCPM (TRUE by default). This parameter is
only considered when the method used to simulate mixed transcriptional pro-
files (simMixedProfiles function) was "AddRawCount". Otherwise, data were
already normalized.

scaling How to scale data before training. It can be: "standardize" (values are cen-
tered around the mean with a unit standard deviation), "rescale" (values are
shifted and rescaled so that they end up ranging between 0 and 1) or "none" (no
scaling is performed). "standardize" by default.

norm.batch.layers

Whether to include batch normalization layers between each hidden dense layer
(TRUE by default).

custom.model It allows to use a custom neural network architecture. It must be a keras.engine.sequential.Sequential
object in which the number of input neurons is equal to the number of consid-
ered features/genes, and the number of output neurons is equal to the number
of cell types considered (NULL by default). If provided, the arguments related to
the neural network architecture will be ignored.

shuffle Boolean indicating whether data will be shuffled (TRUE by default).

https://tensorflow.rstudio.com/reference/keras/activation_relu.html
https://tensorflow.rstudio.com/reference/keras/loss-functions.html
https://tensorflow.rstudio.com/reference/keras/metric_binary_accuracy.html

trainDeconvModel 71

sc.downsampling

It is only used if type.data.train is equal to 'both' or 'single-cell'. It
allows to set a maximum number of single-cell profiles of a specific cell type for
training to avoid an unbalanced representation of classes (NULL by default).

use.generator Boolean indicating whether to use generators during training and test. Gener-
ators are automatically used when on.the.fly = TRUE or HDF5 files are used,
but it can be activated by the user on demand (FALSE by default).

on.the.fly Boolean indicating whether simulated data will be generated ’on the fly’ during
training (FALSE by default).

agg.function If on.the.fly == TRUE, function used to build mixed transcriptional profiles. It
may be:

• "AddRawCount" (by default): single-cell profiles (raw counts) are added up
across cells. Then, log-CPMs are calculated.

• "MeanCPM": single-cell profiles (raw counts) are transformed into logCPM
and cross-cell averages are calculated.

• "AddCPM": single-cell profiles (raw counts) are transformed into CPMs and
are added up across cells. Then, log-CPMs are calculated.

threads Number of threads used during simulation of mixed transcriptional profiles if
on.the.fly = TRUE (1 by default).

view.metrics.plot

Boolean indicating whether to show plots of loss and evaluation metrics during
training (TRUE by default). keras for R allows to see model progression during
training if you are working in RStudio.

verbose Boolean indicating whether to display model progression during training and
model architecture information (TRUE by default).

Details

Simulation of mixed transcriptional profiles ’on the fly’
trainDeconvModel can avoid storing simulated mixed spot profiles by using the on.the.fly ar-
gument. This functionality aims at reducing the the simMixedProfiles function’s memory usage:
simulated profiles are built in each batch during training/evaluation.

Neural network architecture
It is possible to change the model’s architecture: number of hidden layers, number of neurons for
each hidden layer, dropout rate, activation function, and loss function. For more customized models,
it is possible to provide a pre-built model through the custom.model argument (a keras.engine.sequential.Sequential
object) where it is necessary that the number of input neurons is equal to the number of considered
features/genes, and the number of output neurons is equal to the number of considered cell types.

Value

A SpatialDDLS object with trained.model slot containing a DeconvDLModel object. For more
information about the structure of this class, see ?DeconvDLModel.

See Also

plotTrainingHistory deconvSpatialDDLS

72 trained.model

Examples

set.seed(123)
sce <- SingleCellExperiment::SingleCellExperiment(

assays = list(
counts = matrix(

rpois(30, lambda = 5), nrow = 15, ncol = 10,
dimnames = list(paste0("Gene", seq(15)), paste0("RHC", seq(10)))

)
),
colData = data.frame(

Cell_ID = paste0("RHC", seq(10)),
Cell_Type = sample(x = paste0("CellType", seq(2)), size = 10,

replace = TRUE)
),
rowData = data.frame(

Gene_ID = paste0("Gene", seq(15))
)

)
SDDLS <- createSpatialDDLSobject(

sc.data = sce,
sc.cell.ID.column = "Cell_ID",
sc.gene.ID.column = "Gene_ID",
sc.filt.genes.cluster = FALSE

)
SDDLS <- genMixedCellProp(

object = SDDLS,
cell.ID.column = "Cell_ID",
cell.type.column = "Cell_Type",
num.sim.spots = 50,
train.freq.cells = 2/3,
train.freq.spots = 2/3,
verbose = TRUE

)
SDDLS <- simMixedProfiles(SDDLS)
SDDLS <- trainDeconvModel(

object = SDDLS,
batch.size = 12,
num.epochs = 5

)

trained.model Get and set trained.model slot in a SpatialDDLS object

Description

Get and set trained.model slot in a SpatialDDLS object

training.history 73

Usage

trained.model(object)

trained.model(object) <- value

Arguments

object SpatialDDLS object.
value DeconvDLModel object.

training.history Get and set training.history slot in a DeconvDLModel object

Description

Get and set training.history slot in a DeconvDLModel object

Usage

training.history(object)

training.history(object) <- value

Arguments

object DeconvDLModel object.
value keras_training_history object with the training history of the deep neural

network model.

zinb.params Get and set zinb.params slot in a SpatialDDLS object

Description

Get and set zinb.params slot in a SpatialDDLS object

Usage

zinb.params(object)

zinb.params(object) <- value

Arguments

object SpatialDDLS object.
value ZinbParametersModel object with a valid ZinbModel object.

74 zinbwave.model

ZinbParametersModel-class

The Class ZinbParametersModel

Description

The ZinbParametersModel class is a wrapper class for the ZinbModel class from the zinbwave
package.

Details

This wrapper class contains the zinbwave.model slot, which holds a valid ZinbModel object.

Slots

zinbwave.model A valid ZinbModel object.

References

Risso, D., Perraudeau, F., Gribkova, S. et al. (2018). A general and flexible method for signal
extraction from single-cell RNA-seq data. Nat Commun 9, 284. doi: doi:10.1038/s41467017-
025545.

zinbwave.model Get and set zinbwave.model slot in a ZinbParametersModel object

Description

Get and set zinbwave.model slot in a ZinbParametersModel object

Usage

zinbwave.model(object)

zinbwave.model(object) <- value

Arguments

object ZinbParametersModel object.

value ZinbModel object with the estimated parameters to simulate new single-cell pro-
files.

https://doi.org/10.1038/s41467-017-02554-5
https://doi.org/10.1038/s41467-017-02554-5

Index

barErrorPlot, 3, 8, 9, 12, 25
barPlotCellTypes, 5
blandAltmanLehPlot, 4, 6, 9, 12, 25

calculateEvalMetrics, 4, 8, 9, 12, 18, 19,
25, 69

cell.names, 10
cell.names,PropCellTypes-method

(cell.names), 10
cell.names<- (cell.names), 10
cell.names<-,PropCellTypes-method

(cell.names), 10
cell.types, 10
cell.types,DeconvDLModel-method

(cell.types), 10
cell.types<- (cell.types), 10
cell.types<-,DeconvDLModel-method

(cell.types), 10
corrExpPredPlot, 4, 8, 9, 11, 25
createSpatialDDLSobject, 13, 21, 36, 37

deconv.spots, 18
deconv.spots,SpatialDDLS-method

(deconv.spots), 18
deconv.spots<- (deconv.spots), 18
deconv.spots<-,SpatialDDLS-method

(deconv.spots), 18
DeconvDLModel, 4, 7, 9–11, 18, 19, 24, 29, 38,

39, 41, 47, 48, 50–52, 62, 63, 66–68,
71, 73

DeconvDLModel (DeconvDLModel-class), 18
DeconvDLModel-class, 18
deconvSpatialDDLS, 6, 19, 35, 40, 44–47, 64,

71
dgCMatrix, 62, 63
distErrorPlot, 4, 8, 9, 12, 23

estimateZinbwaveParams, 17, 26, 58–60

facet_wrap, 12, 25

features, 29
features,DeconvDLModel-method

(features), 29
features<- (features), 29
features<-,DeconvDLModel-method

(features), 29

genMixedCellProp, 17, 29, 32, 50, 53–57
getHDF5DumpCompressionLevel, 16, 55, 59
getProbMatrix, 32

installTFpython, 32
interGradientsDL, 19, 33, 41, 44, 68

loadSTProfiles, 21, 35
loadTrainedModelFromH5, 38, 48, 50, 52

method, 38
method,PropCellTypes-method (method), 38
method<- (method), 38
method<-,PropCellTypes-method (method),

38
mixed.profiles, 39
mixed.profiles,SpatialDDLS-method

(mixed.profiles), 39
mixed.profiles<- (mixed.profiles), 39
mixed.profiles<-,SpatialDDLS-method

(mixed.profiles), 39
model, 39
model,DeconvDLModel-method (model), 39
model<- (model), 39
model<-,DeconvDLModel-method (model), 39

plotDistances, 40
plotHeatmapGradsAgg, 41
plots, 42
plots,PropCellTypes-method (plots), 42
plots<- (plots), 42
plots<-,PropCellTypes-method (plots), 42
plotSpatialClustering, 43
plotSpatialGeneExpr, 44

75

76 INDEX

plotSpatialProp, 45, 47
plotSpatialPropAll, 46, 46
plotTrainingHistory, 35, 47, 64, 71
preparingToSave, 19, 48, 52
prob.cell.types, 48
prob.cell.types,SpatialDDLS-method

(prob.cell.types), 48
prob.cell.types<- (prob.cell.types), 48
prob.cell.types<-,SpatialDDLS-method

(prob.cell.types), 48
prob.matrix, 49
prob.matrix,PropCellTypes-method

(prob.matrix), 49
prob.matrix<- (prob.matrix), 49
prob.matrix<-,PropCellTypes-method

(prob.matrix), 49
project, 49
project,SpatialDDLS-method (project), 49
project<- (project), 49
project<-,SpatialDDLS-method (project),

49
PropCellTypes, 10, 29, 31, 38, 42, 43, 49, 50,

52, 53, 57, 62, 63
PropCellTypes (PropCellTypes-class), 50
PropCellTypes-class, 50

save, 51
saveRDS, 48, 50, 52
saveRDS,DeconvDLModel-method (saveRDS),

50
saveRDS,saveRDS-method (saveRDS), 50
saveRDS,SpatialDDLS-method (saveRDS), 50
saveTrainedModelAsH5, 19, 38, 48, 50, 52, 52
set, 52
set,PropCellTypes-method (set), 52
set.list, 53
set.list,PropCellTypes-method

(set.list), 53
set.list<- (set.list), 53
set.list<-,PropCellTypes-method

(set.list), 53
set<- (set), 52
set<-,PropCellTypes-method (set), 52
showProbPlot, 31, 50, 53
simMixedProfiles, 29, 31, 55
simSCProfiles, 26, 28, 58
single.cell.real, 61
single.cell.real,SpatialDDLS-method

(single.cell.real), 61

single.cell.real<- (single.cell.real),
61

single.cell.real<-,SpatialDDLS-method
(single.cell.real), 61

single.cell.simul, 61
single.cell.simul,SpatialDDLS-method

(single.cell.simul), 61
single.cell.simul<-

(single.cell.simul), 61
single.cell.simul<-,SpatialDDLS-method

(single.cell.simul), 61
SingleCellExperiment, 14, 16, 17, 60–62
spatial.experiments, 62
spatial.experiments,SpatialDDLS-method

(spatial.experiments), 62
spatial.experiments<-

(spatial.experiments), 62
spatial.experiments<-,SpatialDDLS-method

(spatial.experiments), 62
SpatialDDLS, 4, 6, 7, 9, 11, 13, 16–22, 24, 27,

28, 30–32, 34, 36, 38–41, 43–53, 55,
56, 58, 60–62, 64, 68–73

SpatialDDLS (SpatialDDLS-class), 62
SpatialDDLS-class, 62
SpatialDDLS-Rpackage, 63
SpatialExperiment, 14, 15, 17, 36, 43–46,

62–64
spatialPropClustering, 44, 64
SummarizedExperiment, 39, 56, 62, 63

test.deconv.metrics, 66
test.deconv.metrics,DeconvDLModel-method

(test.deconv.metrics), 66
test.deconv.metrics<-

(test.deconv.metrics), 66
test.deconv.metrics<-,DeconvDLModel-method

(test.deconv.metrics), 66
test.metrics, 66
test.metrics,DeconvDLModel-method

(test.metrics), 66
test.metrics<- (test.metrics), 66
test.metrics<-,DeconvDLModel-method

(test.metrics), 66
test.pred, 67
test.pred,DeconvDLModel-method

(test.pred), 67
test.pred<- (test.pred), 67
test.pred<-,DeconvDLModel-method

(test.pred), 67

INDEX 77

topGradientsCellType, 44, 67
trainDeconvModel, 22, 29, 37, 38, 40, 41, 46,

47, 52, 56, 57, 68, 69
trained.model, 21, 72
trained.model,SpatialDDLS-method

(trained.model), 72
trained.model<- (trained.model), 72
trained.model<-,SpatialDDLS-method

(trained.model), 72
training.history, 73
training.history,DeconvDLModel-method

(training.history), 73
training.history<- (training.history),

73
training.history<-,DeconvDLModel-method

(training.history), 73

zinb.params, 73
zinb.params,SpatialDDLS-method

(zinb.params), 73
zinb.params<- (zinb.params), 73
zinb.params<-,SpatialDDLS-method

(zinb.params), 73
zinbFit, 27
ZinbModel, 62, 63, 73, 74
ZinbParametersModel, 28, 73, 74
ZinbParametersModel

(ZinbParametersModel-class), 74
ZinbParametersModel-class, 74
zinbwave.model, 74
zinbwave.model,ZinbParametersModel-method

(zinbwave.model), 74
zinbwave.model<- (zinbwave.model), 74
zinbwave.model<-,ZinbParametersModel-method

(zinbwave.model), 74

	barErrorPlot
	barPlotCellTypes
	blandAltmanLehPlot
	calculateEvalMetrics
	cell.names
	cell.types
	corrExpPredPlot
	createSpatialDDLSobject
	deconv.spots
	DeconvDLModel-class
	deconvSpatialDDLS
	distErrorPlot
	estimateZinbwaveParams
	features
	genMixedCellProp
	getProbMatrix
	installTFpython
	interGradientsDL
	loadSTProfiles
	loadTrainedModelFromH5
	method
	mixed.profiles
	model
	plotDistances
	plotHeatmapGradsAgg
	plots
	plotSpatialClustering
	plotSpatialGeneExpr
	plotSpatialProp
	plotSpatialPropAll
	plotTrainingHistory
	preparingToSave
	prob.cell.types
	prob.matrix
	project
	PropCellTypes-class
	saveRDS
	saveTrainedModelAsH5
	set
	set.list
	showProbPlot
	simMixedProfiles
	simSCProfiles
	single.cell.real
	single.cell.simul
	spatial.experiments
	SpatialDDLS-class
	SpatialDDLS-Rpackage
	spatialPropClustering
	test.deconv.metrics
	test.metrics
	test.pred
	topGradientsCellType
	trainDeconvModel
	trained.model
	training.history
	zinb.params
	ZinbParametersModel-class
	zinbwave.model
	Index

